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INTRODUCTION

Optical methods for signal processing have long been touted as playing an

important role in the future: they will enable complex operations to be performed on

large arrays of data at a very rapid rate. This prediction is based on the inherent

capability of optical systems to operate on two-dimensional (2-D) data planes and on the

ability of spherical lenses to perform the Fourier transform. However, the promise of

optical methods to rapidly perform signal-processing tasks remains unfulfilled, with

certain notable exceptions (e.g., processing synthetic aperture radar and stellar speckle

interferometry data). There are several reasons for this, but the most salient are the

limitations of available 2-D input/output devices (spatial light modulators and detector

arrays), the fact that the optical phase of the processed signal cannot be directly

detected, and the sensitivity of coherent optical systems to mechanical disturbances and

speckle noise.

In contrast to the situation for 2-D optical hardware, signal processor technology

for temporal (1-D) signals is quite advanced in capability and flexibility, and thus

presents the interesting prospect of applying these 1-D devices to 2-D signal processing

if a suitable dimensional transformation can be employed. In effect, this would allow

the rapid parallel processing capability to be "traded off" for more precise, flexible, and

noise-immune I-D serial processing in a hybrid system. Several dimensional

transformations are available for deriving 1-D signals from 2-D data and reconstructing

processed 2-D outputs, the most familiar being the television raster. But another

algorithm, the Radon transform, has some very nice mathematical properties that make it

an excellent candidate for application to signal processing. These properties were derived

by an Austrian mathematician, Johann Radon, early in this century, and the transform

bearing his name has become well-known in recent years as the mathematical basis for

* medical computed tomography. In the Radon transform, I-D signals are derived from

2-D input data by "projection," i.e.. integration along sets of parallel lines. The 2-D
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signal can be regenerated by "smearing" and summing appropriately filtered I-D

projections back over the 2-D space. The mathematical properties of the transform

enable 2-D signal-processing operations based on the Fourier transform and/or

convolution operations to be performed by means of 1-D operations on the projections.

Such operations include: generation of complex Fourier transform, Hartley transform,

Wigner distribution function, general 2-D filtering and correlation, bandwidth

compression, spectrum analysis, and cepstrum analysis.

THEORETICAL INVESTIGATION OF THE RADON TRANSFORM

APPLIED TO SIGNAL PROCESSING

In his original development of the mathematical theory of the transform. Johann

Radon proved two theorems that have been the basis for application of the Radon

transform to signal processing: the central-slice (or projection-slice) theorem and the

* filter theorem. They demonstrate that 2-D Fourier transforms and convolutions can be

performed by 1-D operations on the projection data. To illustrate mathematically, a

projection of a 2-D function f(r) is commonly defined by a linear space-variant integral

transformation:

I2Ile
R2[f(r)] "Z ,f(p,) =dr f(r) (p - r-) (1) 

where R. denotes the Radon transform operator. As is customary, we denote scalar

variables and vectors by normal-face and bold-face characters, respectively. The

projection ,f is a function of two variables: the radial spatial dimension p and the

azimuth angle 0. However, all of the operations we consider operate on p alone, and

therefore we can consider the projections Xf to be I-D functions of p parameterized by

the azimuth angle 0. The central-slice theorem states that the Fourier transform of the

2-D function f(r) is obtained by performing I-D Fourier transforms of each projection

2



and displaying the outputs at the proper radial azimuths: t

[r f(r)][ p =fly =p [Xf(p,0)] E Af0,,0). (2)

The geometry of the Radon transform and the central-slice theorem are shown in Figure

1 of Ref. 1. The filter theorem Jemonstrates that the 1-D convolution of the

projections of two functions at the same azimuth is identical to the projection of the

2-D convolution, i.e.,

R2 [f(r) ** g(r)] = R,[f(r)] * R,[g(r)], (3)

where * and ** denote I-D and 2-D convolution respectively. It is easy to see that

the same result holds for correlation operations as well. The processed 2-D function

may be reconstructed using any of several algorithms to perform the inverse Radon

transform.'

Our analysis of 2-D operations susceptible to solution in Radon space has primarily

exploited these two theorems. We have investigated those useful signal-processing

operations that can be decomposed into a sequence of Fourier transforms, convolutions,

and other achievable 1-D and 2-D operations such as addition, pointwise multiplication,

and taking logarithms. Such operations include Fourier analysis (computation of both

the power spectrum and complex transform), the Hartley transform, image filtering and

correlation, bandwidth compression, generation of the Woodward ambiguity function and

the Wigner distribution function, some spectrum estimation algorithms (periodograms.

Blackman-Tukey analysis, and Yule-Walker autoregressive models), and the cepstrum.

Work by other authors has established' that the Radon transform can be useful for

pattern recognition through calculation of image moments and the Hough transform.

3
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CONSTRUCTION OF A PRACTICAL SYSTEM FOR 2-D SPECTRAL

ANALYSIS AND IMAGE FILTERING

6
The hybrid system constructed to perform signal processing in Radon space consists 6

of an optical scanner (to generate the Radon transform data), 1-D signal processors, and

a computer-controlled CRT display. The optical Radon transformer uses a laser source.

a Bragg-cell scanner, and anamorphic optics to project a line-of-light onto a 2-D
4..

reflective or transmissive object. By collecting the light reflected or transmitted by the

object onto a detector, a signal proportional to the line integral of the reflectance or

transmittance is generated. The line-of-light is scanned parallel to itself by the Bragg

cell to produce a temporal signal proportional to the line-integral projection for one

azimuth angle. After one projection is generated, the azimuth angle is changed by an

image-rotating prism. Thus, the Radon projections are generated as a sequence of

temporal electronic signals. For obvious reasons, the optical Radon transformer is called

a flying-line scanner, and is shown schematically in Figure 2 of Ref. 1. Though we

had originally planned to demonstrate Radon transformation at video rates (30 frames/s),

we are limited by the rotation rate of the stepper motor for the image rotator to about 5

* frames/s. This is by no means a fundamental limit for signal processing in Radon

space--optical systems have been built to rotate images at 75 frames/s with excellent

stability and image quality.
Sm

After derivation of the projection data. signal processing can be performed by l-D

electronic or hybrid devices. For the demonstration of 2-D spectrum analysis and

Fourier transformation, we implemented the chirp transform algorithm with surface

acoustic wave dispersive filters to produce the I-D transform of the temporal input data

within 30 Ms. The time-bandwidth product of the Fourier transformer is only 50. but

again this is by no means a fundamental limitation. Filtering of the 1-D signals was

performed by applying the projection signal to one port of a monolithic SAW convolver.

4



A fast ECL function generator was constructed to store the filter function to be applied

to the other port of the SAW convolver.

To construct the 2-D Fourier transform signal, the 1-D processed signal was

displayed in the proper polar format on a computer-controlled CRT. The results

obtained with the system are available in Ref. 4, which is available in the Appendix.

It had been our intention to design and construct a custom SAW filter to perform

the filtering operation for image reconstruction from projections. However, the
a-

capabilities of the available photolithographic facilities were not adequate for the task,

and instead we utilized the SAW convolver for the filtering operation. The ECL

function generator was built to store the filter function. Recognizable reconstructions

were derived of input scenes at approximately 5 frames/s, but were not of useful quality

for two reasons. The signal-to-noise ratio of the output from the SAW con iolver was

not adequate, and the original image rotator used to perform the inverse Radon

transform exhibited too much runout. The results obtained are to be published shortly.

PROOF-OF-PRINCIPLE EXPERIMENTS FOR

OTHER PROCESSING OPERATIONS

Both computer simulations and demonstrations in hardware were performed for a

number of the 2-D processing operations listed above, including Fourier spectrum

analysis, complex Fourier transformation, the Hartley transform, data compression.

generation of the Wigner distribution function, power spectrum estimation'

(periodograms, the Blackman-Tukey algorithm, and the Yule-Walker autoregressive

model), and the cepstrum. Most of these results have been reported either in the open

literature '.. ' , '. ' , ' or by presentation at technical meetings. Papers dealing with the

remaining operations are in preparation.

5Sa ~ . *..~.. .... ... I



FEASIBILITY OF USING THE RADON TRANSFORM

FOR 3-D DATA PROCESSING 'p

An architecture for a 3-D image processor was developed prior to the

commencement of the contract period, and so the work in this program concentrated on

investigation of materials for rapid storage and retrieval of the data arrays. The

proposed technique utilizes wavelength-multiplexed storage in alkali-halide crystals. A

theoretical examination of data-storage mechanisms in the crystals was made to describe

the conditions for a linear relationship between exposure intensity (or exposure time)

and hole depth. The two data-storage mechanisms are photochemical holeburning (PHB)

and nonphotochemical holeburning (NPHB). It was discovered that PHB materials do ":,

exhibit the necessary linear relationship, but NPHB ma,-rials do not. The results were

reported in Ref. 9.
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Application of the Radon transform to optical production of the
Wigner distribution function

Roger L Easton. Jr. Abstract. The Wigner distribution function (WDF). a simultaneous coordinate
Anthony J. Ticknor and frequency representation of a signal, has properties useful in pattern
Harrison H. Barrett recognition. Because the WDF is computationally demanding, its use is not
Optical Sciences Center usually appropriate in digital processing. Optical schemes have been developed
University of Arizona to compute the WDF for one-dimensional (1 -D) signals, often using acousto-
Tucson, Arizona 85721 optic signal transducers. Some recent work has demonstrated the computation

of two-dimensional (2-D) slices of the four-dimensional (4-0) WDF of a 2-D
input transparency. In this latter case, the required 2-0 Fourier transformation
is performed by coherent optics. We demonstrate that computation of the WDF
of real 2-0 signals is susceptible to Radon transform solution. The 2-D opera-
tion is reduced to a series of 1 -D operations on the line-integral projections. The

* required projection data are produced optically, and the Fourier transformation
is performed by efficient 1-D processors (surface acoustic wave filters) by
means of the chirp-transform algorithm. The resultant output gives 1 -D slices
through the 4-D WDF nearly in real time, and the computation is not restricted
to coherently illuminated transparencies. This approach may be useful in dis-
tinguishing patterns with known texture direction. The optical setup is easily
modified to produce the cross-Wigner distribution function, a special case of the
complex, or windowed, spectrogram.

Keywords" optical patern recognition optical data processing; Wigner distribution func-
don; Radon transforrr; surface acoustic wave signal processing

Optical Engineering 23t6), 738-744 (November/December 1984).
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1. INTRODUCTION -0 -00

The Wigner distribution function (WDF) was introduced in 1932 as a (2)
phase space representation in quantum mechanics.' Because it de-
scribes a signal simultaneously in Fourier reciprocal variables, it has X e- 2 mU'rd2r" ,

potential applications in the recognition of nonstationary pat-
terns. 2 The WDF of a I-D input function of f(x) is a 2-D function
and is commonly defined as where r0 and r' are 2-D coordinate vectors and u is a 2-D spatial

frequency vector. If Wf(x0.u) is evaluated at zero frequency and a
change of variables is performed. the WDF becomes an autocon-/ / \ , volution. Thus, the WDF may be interpreted as a generalized auto-

W(x 0.u) = f x0 + f"x o - - 2 m uedx convolution at nonzero frequency.'

.- Several authors5 - ' have reviewed the properties of the WDF,
including some aspects that make it suitable for implementation by

194:a -g ted for publication iune 24. 194; recetvedby Manaung EdiorSept.4. 194 optical processing. Most importantly. the WDF of any real or com-
* 0 t9 Society ot Phow-Optical Instrunentiaon Enrpneei. plex function is real (though not always positive), since it is the

738 / OPTICAL ENGINEERING / November/DOcember 1984 /Vol. 23 No. 6
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APPUCATION OF THE RADON TRANSFORM TO OPTICAL PRODUCTION OF THE WIGNER DISTRIBUTION FUNCTION

Fourier transform of ftxo + (x'/2)] f'*[x o - (x'/ 2)], which is Hermi-
tian with respect to x'. In addition, the region of support of Wf(x 0 ,u)
is identical to that of f(x) in both the coordinate and frequency

domains. f W
In computing the WDF, the major bottleneck is the Fourier

4P transformation. In the case of a i-D (2-D) input signal, a full 1-D
(2-D) Fourier transform must be performed for each value of the l-D
(2-D) coordinate. Were this to be done digitally in the case of a I -D
discrete signal of n samples, it would require n multiplications to
produce the product function. A total of nlog2n multiplications is
needed to compute the subsequent fast Fourier transform, giving a

total of n + nlog2n multiplications per point. This sequence must be X
evaluated at each sample in the sequence (corresponding to each
value of x in Eq. (I)], giving a total of n[n + niog2n] = n2 log2n
multiplications to compute a I-D discrete WDF. For a 2-D nXn
array, similar reasoning demonstrates that a total of n2[n 2 + n2 log2n2]
= 2n 4log2 n multiplications is required. The motivation to find opti-
cal processing algorithms is quite apparent, especially in the applica-
tion of feature detection or recognition. due to the large quantity of
output data.

Several schemes have been developed to generate the 2-D WDF x( P,
of I -D signals.'-' Recent work by Bamler and Glfinder 0 has demon-
strated computation of 2-D slices of the 4-D WDF of a real-valued
2-D input transparency. The product function was produced opti-
cally by an autocollimating telescope, and the Fourier transforma- r
tion was performed by a lens. By scanning over the coordinates of the
input transparency, all 2-D slices of the complete 4-D WDF can be
found.

Computation of Fourier transforms is also susceptible to solution F(P)
by the Rador, transform.I I- '4 Data of dimension m, where m a2, are
reduced to I-D by integration over m - I dimensions. A I-D Fou-
rier transform of the projection data yields one line through the
origin of the m-D Fourier transform. Varying the projection angle

* allows building up the complete Fourier transform. This procedure is
easily adapted to computation of the WDF and offers advantages in
certain applications.

. RADON TRANSFORM
The Radon transform has received much attention in the scientific A ,
community since the invention of x-ray computed tomography (CT)
in the 1960s. It has been used in the fields of astronomy, geology, and
nuclear magnetic reasonance." Recently, it has been adapted to
feature extraction in optical data processing."5 In 1917 Johann
Radon published 6 the mathematics of the transform, in which he
proved that a 2-D mathematical function can be reconstructed from
the complete set of its line-integral projections. The basic mathemat- Fig. 1. Geometry of the Radon transform. (Top) Derivation of one projec-
ical analysis of the Radon transform is straightforward and has been tion Mp.) by line-integral projection. Line integrals are evaluated along the
considered by several authors,II' 2 so we shall only touch briefly on azimuth dlrection I# + (r/2)] toyield theproection along uimuth direction
the main points relevant to 2-D Fourier analysis. (0). The unit vector A defines the azimuth (#). (Bottom) Central-slice theo-

rem: the 1 -0 Fourier transform of a line-integral projection yields one lineThe I-D line-integral projection X(p,tO) of a 2-D function f(r) through the 2-D Fouier transform of the original 2-D function.
along azimuth direction 0 (relative to the x-axis) is defined as

P, -7 [(p)] -A(P,0)], ,* p - i,

A(p, ) = J J d2rf(r)8(p - r-f). (3)

00 0 0

The projection X may be regarded as a I-D function of p, param- f p e - 2rp / f d2r t(rl6(p -n')
etrized by b. The I -D delta function in the integrand reduces the area f
integral to a line integral along a line normal to fi and at a distance p

* from the origin (Fig. i). The set [A(ps)] for all azimuth angles b
constitutes the Radon transform of f(r). As will be demonstrated, the
WDF of a 2-D function f(x) may be computed by performing opera- - } d2r f(r)e-2?rid -r
tions on the line-integral projections of an easily derived 2-D func- f f
tion. reducing the 2-D computation of the Fourier transforms for -00 -0-
each value of the coordinate vector x to a series of I-D operations.
This can be seen if a I-D Fourier transform of a line-integral F(P) = (4)

lp projection is performed:

OPTICAL ENGINEERING / November/December 1984 / Vol. 23 No. 6 / 739......... , 4,. ..,- ., . .. . ,. ,. .-, .. .. . ... - - . .. . . . - , , ., . . - ' - -. - , - . ,. . . ,- . ,, - , . . "
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EASTON. TICKNOR. BARRETT

where lowercase letters denote functions in coordinate space and
uppercase letters denote the Fourier transforms, and p is the 2-D ZERO-ORDER
spatial frequency vector. This result shows that the I-D Fourier BLOCKING FILTER
transform of the line-integral projection X(pA) of the 2-D function BCN IE
f(r) yields one line through the origin of the 2-D Fourier transform of

• f(r) (Fig. I). This is the central-slice or projection-slice theorem. The BRAGG CELL
advantage of using the Radon transform approach to 2-D Fourier SCANNER K 1W \
transformation results from the ability to do the Fourier transformau-
tion in one dimension once the projections are available. There are
several efficient l-D processors available to perform the Fourier
transformation, including acousto-optic cells, charge-coupled device
(CCD) transversal filters, and surface acoustic wave (SAW) disper-

* sive delay lines. The system constructed uses SAW delay lines in the
chirp-transform algorithm, as will be discussed shortly. LASER

3. FLYING LINE SCANNER
To use the Radon transform to compute Fourier transforms, it is first
necessary to produce the line-integral projection of the 2-D function. IMAGE
This is easily done optically using a device we call a flying line scanner INPUT ROTATOR

* (Fig. 2.), which projects a line of light onto the input transparency. PLANE
The azimuth of the line of light can be selected by an image rotator,
e.g., a dove prism. The light transmitted through the -ansparency is
proportional to the line integral of the intensity transmission along
that line. An acousto-optic scanner allows the line of light to be swept j" f ()
perpendicular to itself [i.e., varying p in A(pq), Eq. (3)]. The light
transmitted is collected by the photomultiplier tube (PMT), whose ,( )

* output current in time is proportional to Mp,o). Rotation of the
dove prism varies the angle 46 and allows the entire set [A(ps)] to be ran cll by clindeica lma T eh ze-orer dra-tin is loc ue d by the

collected, filter. and the first-order been paese through to the Image rotator. The
relay opPic imagee the ine of light onto the tansparency ff7). Application
of a liner FM signal to the Bragg call san the line of light *crow the

4. SAW CHIRP FOURIER TRANSFORM h- Theb"rm light is c dbyt o ietube. ,
For a w ca azimuth angle 0 selected by the image rotator. the PMT

The SAW filter is an acoustoelectric device that can be designed to output signal in time is Proportional to the line-intagral piroection X(p.4).
have one of a wide variety of impulse responses. It consists of a
piezoelectric crystal substrate upon which is deposited a pair of
conductive interdigital transducers (Fig. 3). A rf signal applied to one
transducer produces a rf field between the fingers of the transducer. INUT

This field distorts the crystal piezoelectrically, and these displace-
ments travel along the crystal surface at the sound velocity. When the / INPUT TRANSDUCER
acoustic wave reaches the second transducer, an electric field is IMPULSE
piezoelectrically induced in the conductor. The resulting electric TRAVELING SURFACE WAVE
signal is the convolution of the input signal and the filter's impulse
response. By appropriate design of the interdigital transducers, the
desired response may be obtained.'

To perform Fourier transformation, three filters with linear FM
impulse responses are required for the chirp-transform algorithm.
The impulse response of a linear FM filter is

PIEZOELECTRIC SUSTRATE - -

h(t) = ei(du0 ±at)t = eiav t t i a , (5) OUTPUT

OUTPUT TRANSDUCER

where at is the frequency at t = 0 and a is the "chirp rate.
If we ignore the constant frequency a, a signal fi(t) applied to a Fig. 3. Layout of a simple surface acoustic wave filter. An impulse ap-

filter of impulse response h(t) = e+I t2 will produce an output signal plied to one transducer producesa traveling acoustic wave on the surface
;(t ): of the plezoelectrlc substrate. The frequency of the wave is determined by

the spacing of the fingers in the interdigital transducer end the amplitude
by the amount of finger ovedp. The acoustic wave is sampled by the

f(t) = fi(t) * output transducer. The overall filter impulse response is the convolution
of the responsri of the two transducers. For linear chirp filters, the
response to an impulsive input is a signal varying linearly in frequency
over time.

= dr fi(r) eI0 t  r
)2 (6) obtain

fo~) = 2 dr (r) c a e-,a . (7) -
where* denotes convolution. Expanding the exponential factor, we .. d[

7I-4
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APPUCATION OF THE RADON TRANSFORM TO OPTICAL PRODUCTION OF THE WIGNER DISTRIBUTION FUNCTION

, DOW"IRP~

f(x,y)

tZ-AXIS

1tI IMAGE ROTATIOII(a

Fig. 4. Fourier apectrum analysis by memo of the Radon tranaform. The
Oine of light produced by the flying One scanner (Fig. 21 pssnathrough the
input tranaparency ffx.yl - fiT). The light collected by the PMT pro-
duce a time signal proportional to the ine-intogral projection A(t.#). This
signal Is multiplied by an upehkrp [h(t) - eHi ' and convolved with a
downe tl ,, o-h]. The output Is demodulated. giving a signal
proportion l to the magnitude of the 1 -0 Fourier transform of .(t.0). This
Is displayed on a CRT and intsgrstsd on the output plane (photographic
fllml to give the 2-0 Fourier powe specmm.

Identifying t as ry/ a produces the equation asN
fo(t) = fo(-, -f) r) eiarj-2rivrdr b)

tr [titt ei19]. (8) Fig. .Spectrum analysis by means of the Radon translfom. (a) Input

function. (b) Output obtained from apparatus of Fig. 4. The fundamental
The Fourier transform is thus obtained in three steps: spatial frequencies of the fine gratings and three orders from the coeue* grating are visibl.

(I) fi(t) is multiplied by e
- i t'

'Z (premultiplication).

(2) This product is convolved with a filter if impulse response eia t .
(3) The resultant is multiplied by e- iat (postmultiplication). line-integral projection data requires 10 Ms. and the transform data

are read out less than 20 ls later, so it is feasible to perform the full
2-D spectrum analysis at video rates if the image rotation rate is 900

If only the modulus is required, the postmultiplication can be rpm. requiring a prism rotation rate of 450 rpm.
deleted. Of course, in actuality, the filters have finite time windows of
width T. which affect the limits on the integrals in Eqs. (6) through 5. RADON IMPLEMENTATION OF THE 4-D WDF
(8), and overall have the effect of convolving the result with a To compute the 4-D WDF of a 2-D real function t(r). it is necessary
sinc(t/T") function. In practice, the premultiply and postmultiplythe remutipy an potmulipl to form the product function t~r0 + (r'2)] t~r0 - (r" 2)] - m(r0 ,r')
chirps are produced by applying an impulse input at the appropriate tofrthpodcfutint +r'2]to-("2)-rnrrl

time to SAW filters whose impulse response is the appropriate chirp. for all values of r' and then Fourier transform over r'. We can apply

A Fourier transformer with this algorithm was constructed using the Radon transform to this computation in the following manner.

dispersive filters from Andersen Labs (models DS-120-10-20-251A First, we take line-integral projections of the product function

and -251 B). The time dispersion of both models is 20 Ms. and the
bandwidth is 10 MHz. The chirp slopes of the two models are of
opposite sign. The time-bandwidth product of the system (and hence 2P~r0 , ) d~r' m r0 , r') 8(p -M roo d mr.)6p-r-fi) (9)
the number of resolvable spots in the transform) is only 50, but with _
more sophisticated filters the time-bandwidth product could be
boosted to 2000 or more, if required.

A 2-D Fourier spectrum analyzer was constructed using the flying The geometry of the projection is shown in Fig. 6. Taking the I-D
line scanner to produce the projection and the SAW filters to take the Fourier transform of X(pr 0 ,46) yields (by the central-slice theorem,
transform (Fig. 4.). The transformed signal is demodulated and Eq.(4)]onelinethroughthe2-DsliceoftheWDFevaluatedatr o . By
applied to the z-axis of a CRT. For each projection, this gives one rotating the azimuth 0. we can build up the 2-D slice in exact analogy
line through the 2-D Fourier transform. For each new azimuth, a to the 2-D spectrum analyzer. By sampling over the two coordinate
new line is written on the CRT and displayed on the output plane at dimensions, the complete 4-D WD F can be computed. The geometry
the proper orientation by the image-rotating dove prism. Results of for the Radon transform calculation of one line through the WDF is
the Fourier analysis of a test pattern are shown in Fig. 5. Taking the shown in Fig. 7.

OPTICAL ENGINEERING / November/December 1984 / Vol. 23 No. 6/ 741
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Fig. 6. Unintegrl projections of the Wigner distribution function. The Fig. . Hyld system to generatethe WOF of a real inputt(T). The line of
kegration i• made over the line p - ?-A. light from the flying line scanner passes through the beam splitter onto

the transpereny centered at 7o+( r'/2l. The light transnitted is re-
focused onto the transparency y the lena-mirror system. but is now
_ _ _ _ _ __ at T0 + (r'/2). The output is reflected by the been splitter onto
the PMT. The PMT output is Fourier transformed by the SAW filter as

1/70 before and yields one line through the WOF of tgT).
.

mirror tilting may be done quite rapidly. Results are shown in Fig. 9.
This method offers an advantage over that of Bamler and Glinder

in some applications. Since the Fourier transformation is not optical,
coherent illumination is not required if an appropriate scanning
technique is used.

X0 & 6. COMPUTATION OF THE CROSS-WIGNER
-*-DISTRIBUTION FUNCTION AND ITS RELATION TO

THE SLIDING-WINDOW SPECTRUM

The sliding-window spectrum of a function f(r) windowed by a

function g(r) is defined as' 0:

Sfg(r,u) = Efr + -- )g (r - 5 e- 2 mu-r d 2 r. (10)

Fig. 7. Orientation of one output line of the WOF. Consider a line-integral
projection of the product function at an angle 0 to the x-axis at a point
(l%,O). The line of the WOF so obtained is onted in 4-0 WOF output From Eq. (2), we can define a cross-Wigner distribution function

spaee as show , where the y-coodlinate axis has been ignored. (CWDF) to be

To produce the line-integral projection of the product function, Wfg(ru) f f + - r - )e2viur' d 2 r' . (Il)
the technique used by Bamler and GIlnder' o was adapted as pictured

in Fig. 8. The input transparency is placed in the flying line scanner
with the optic axis passing through the point r0 of the transparency.
The transmitted light is collected by a lens, focused on a mirror, and Baqi
reimaged by the lens back on the transparency. The doubly transmit- By changing variables in Eq. (1I) to q = r'. we obtain

4 ted light is reflected out of the system by a beam splitter, collected,
and detected by the PMT. The PMT output current is proportional Go

to the line integral of m(r 0 ,r). As the flying line is scanned across the W(ru) = 2 / f(r + q)g*(r - q) e- 2(u '2q) dq2 
.(12) '

transparency, the temporal signal out of the PMT is proportional to g f /
the integral of m(r 0 ,r') for different values of r'. The signal is Fourier -0 -e

transformed, yielding one line through the WDF. Other values of r0
may be interrogated either by moving the transparency relative to the Assuming a symmetric window function [g(r) g(-r)] and using
optic axis or by tilting the mirror. Using a galvanometer scanner, Eq. (10), we find

742 / OPTICAL ENGINEERING / November/December 1984 / Vol. 23 No.6



APPLICATION OF THE RADON TRANSFORM TO OPTICAL PRODUCTION OF THE WIGNER DISTRIBUTION FUNCTION
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Fig. 9 1 -0 slices through the 4-0 WOF of two 2-0 objects. In each case, the upper trace is the signal from the PMT, representing A(,o) (Eq. (5)1. The
lower trace is the output of the chirp Fourier transformer. Since there was no postmultiply chirp. the magnitude of the transform modulates the carrier
frequency. In (a) and (bI, the object is a grating of 25% duty cycle (25% opaque, 75% transparent) in s circular aperture. The envelope of the upper trace is
due to the line-integral projection of the circular aperture. In (a), the grating is positioned with the optic axis centered on an opaque grating line (defining Toin Eq. (2)]. The components of the product function exactly "overlay, " and the WOF at this coordinate is dominated by the fundamental frequency of the
grating. In (b), the object has been shifted (varying 70) so that an opaque grating line of one shifted function "overlays" the transparent region in the other
shifted function. Hence the WDF is dominated by a frequency twice that of the fundamental of the grating. In (c) and (d), the object is a Fresnal zone plate.
and the coordinate displacement is normal to the scanning line. Shifting one zone plate relative to the other results in a linear moire whose spatial frequency
increases linearly with increased shift.

window function. As before, one line through the spectrum is calcu-
2 I-d lated at a time. In cases of directional texture, this will result in a

Wfg(r.u) = 2 f(q - r)g(q - r) - " 2u)'q d2 q reduced throughput of insignificant data. Results for an Air Force
__ three-bar chart are shown in Fig. II.

7. CONCLUSIONS
We have demonstrated a hybrid optical analog electronics processor

= 2Sf(2r.u) . (13) that can rapidly compute I-D lines through the Wigner distribution
function and cross-Wigner distribution function of real-valued 2-D
inputs. In certain pattern-recognition applications, such as recogni-

Thus, by computing the CWDF of a "',nction using a symmetnc tion and classification of scenes with directional texture, this tech-
window, we can find a scaled version of the sliding-window spec- nique offers advantages over digital processors in speed and over
trum. This is useful in some pattern-recognition applications where other optical processors in output configuration.
the local frequency spectrum is of value."

Evaluation of the CWDF is also possible using the Radon trans- 8. ACKNOWLEDGMENTS
form. The setup is shown in Fig. 10. It is similar to the system for We would like to thank H H. Szu for a helpful discussion. This
finding the WDF except that the reflecting telescope arrangement research was sponsored by the Air Force Office of Scientific
has been replaced with a second lens and transparency to supply the Research. contract number AFOSR-82-0249.
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OPTIC AXISf/ .
g(~) PMT

*IMPULSE UPCNIRP X 1DWNCHIRP II

Fig. 10. Setup to compute the crose-Wigner distribution function. The
Um sof light Incident on ff7r) is ralmaged! on gf 7). The total light inckdent on
the"ATpopoionial to thteOninterl of ff'70 + (Tel2)1g(7 0 - (-el2) 1.
The Fourier transform with respect to r' gives the CWDF.
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I. Introduction and Definitions

Traditionally, the motivation for processing signals by optical means is due primarily to

* two factors. The first is the ability of coherent optical systems using spherical elements to

perform the Fourier transform, while the second is the inherent capability of optical

systems to operate on two-dimensional (2-D) data planes. For 2-D signals (e.g. images),

* optical processing is of obvious utility, but even if the signals to be processed are one-

dimensional (1-D), optical techniques may allow parallel processing of several channels.

The increased system throughput thus obtained may make optical processing attractive

* relative to more precise (but as yet slower) digital electronic technologies.

The main thrust of research in optical signal processing has been directed at applying

either or both of the capabilities of rapid Fourier transformation and parallelism. However,

* there are problems restricting the utility of optical processing that are well-known to those

working in the field and which diminish its attractiveness relative to digital electronic

processing. Primary among these are the limitations of available 2-D input/output devices

* (spatial light modulators and detector arrays), and (for coherent systems) speckle noise.

These limitations are responsible for restricting the use of optical processing to a few

applications in which they are not significant (e.g. off-line synthetic aperture radar

0 processing). In marked contrast to the situation for 2-D hardware, signal -processor

technology for temporal (1-13) signals is quite advanced in capability and flexibility, dnd

hence it may be profitable to apply that 1-D technology to 2-D operations, if possible. In

* effect, this would allow a trade-off between rapid parallel processing and precise serial

processing in a hybrid system. Several algorithmns are available to derive 1-0 signals from

a 2-0 input and reconstruct the 2-0 processed signal. A familiar example of such an

operation is the television raster, which creates a 1-0 temporal signal from 2-0 imagery by

scanning and rederives the 2-0 image by stacking segments of the temporal signal (Rhodes,
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1981b). The raster transduction was used in optical signal processing by Thomas (1966) to

generate a 2-D array from a long 1 -D temporal signal to use as input to a 2-D optical

• processor. Several other dimensional transduction operations were considered by Barteit

and Lohrnann (1981). One that is becoming more familiar can be called a tomographic

transformation, where a 1-D data set is derived from a 2-D signal by integration along sets

* of parallel lines. The relation between these two sets of data has some nice mathematical

properties that make the transformation potentially very useful in both analog and digital

signal processing.

* .A. History and Development

The mathematical basis for the tomographic transformation was derived in 1917 by

Johann Radon, an Austrian mathematician. Radon proved that the complete set of 1-0

*~projections of continuous 2-1 or 3-0 functions with compact support contain all of the

information in the original function. The projections are derived by integration of the 2-D

function over sets of parallel lines, or by integration of the 3-0 function over parallel

*1 planes. The derivation of the 1-D projections from the function is the forward Radon

transform. Radon also derived expressions for reconstruction of the function from its

projections--the inverse Radon transform. Generalization of the theory has made it

* applicable to functions of higher dimensionality (John, 1955). Another development was

made by Cormack (1963, 1964), who formulated the mathematical expansion of projections

into circular harmonics, i.e. a discrete angular Fourier series representation of the

l projection data.

Radon was primarily interested in using projections to find solutions of Rbisson's

differential equation in electrostatics, but his work has been applied to a myriad of

* scientific disciplines since the 1950s, including crystallography, radio astronomy, geophysics,

nuclear magnetic resonance, radiative scattering, and diagnostic radiology. This explosion

S
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:f interest is evident by the number of publications on the subject, especially in the last 15

years or so. For a good discussion of applications and an extensive '.ibliography, see Deans

(1983). No doubt the application of the Radon transform most familiar to the lay public is

in diagnostic radiology. The new fields of x-ray computed tomography (CT), emission V.

computed tomography (ECT), and magnetic resonance imaging (MRI), which enable imaging

of cross-sectional slices of the body of a patient from sets of projection data, have

received much attention in the popular press. Indeed, the medical application of Radon's

theory is the source of its now familiar name; 'tomography' is derived from the Greek word

for slice. Each of these new medical wonders owes its existence to Johann Radon and the

subsequent researchers who generalized and applied the mathematical theory.

In each of the applications listed above, Radon's mathematical theory is used to solve

an inverse problem, where the source function is mathematically reconstructed from the

projection data. Of course, the complete infinite set of projections is never collected,

making it impossible to uniquely reconstruct the source function; only some 'best' estimate

may be found. We shall not overly concern ourselves here with such niceties, as they are

somewhat removed from the purpose at hand and have been considered at length elsewhere

(Rowland, 1979) (3arrett and Swindell, 1981) . Rather, we wish to investigate the use of

the Radon transform as a dimensional transducer in signal processing. The discrete nature
I."

of the data set will still be of some concern to us, mainly due to nonuniform sampling of

Cartesian space by the transformation, but our main purpose is the identification of signal

processing operations that are possible and profitable to perform via a tomographic

transformation. For some of these, the processed 1-0 data alone -nay be sufficient for the

task at hand, but often it will be desirable to reconstruct the processed 2-D signal from the

processed projections and so some consideration will be given to optical methods of

generating the inverse Radon transform.

"1.
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I.B. Basic Theory

In the literature, there are several extensive mathematical developments of the theory

*l of the Radon transform, e.g. Helgason (1980), Deans (1983), and Barrett (1984)

Consequently, we shall keep our discussion brief and emphasize applicability rather than

completeness or mathematical rigor. Also, we shall generally restrict our treatment to the

* 2-D problem, with occasional remarks about application to 3-0 when warranted.

1.B.1. Forward Radon Transform, Projections

Given a 2-D function f(r) = f(x,y) (as is common, we shall denote vectors by boldface

characters), a single projection along an azimuth angle * can be derived by integration

along all lines at azimuth * w/2. The one-dimensional function thus generated has as

independent variable the perpendicular distance of the integration line from the origin.

This distance is the magnitude of the vector p, where p = (p,O) in polar coordinates. It is

also useful to define a unit vector = P = (1,4) = [cos (0, sin s1 (n.b. square brackets

denote Cartesian coordinates and parentheses denote polar coordinates). Naturally, for

each set of integration lines at different angles relative to the x-axis, a different

projection is derived. A common notation for a projection is X(p,O), implying that X. is a

2-D function. But since all operations on the projection will act on the spatial coordinate

p alone, we can consider the projection to be a 1-D function parametrized by the azimuth

angle 4. Depending on one's mathenatical preference, X(p,o) can be defined in a number

of equivalent ways For example, we can consider a projection to be obtained by

integration over lines parallel to the y'-axis in a system of coordinates [x',y'] rotated at

angle $ relative to the original [x,y] axes. However, there are distinct advantages

obtained by defining a projection as a 2-0 integral transform whose kernel is a 1 -D Dirac

delta function which selects the projection azimuth, as shown in Figure 1. Consider a

1 %
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projection azinuth defined by the polar unit vector = ,). We wish to determine the

value of the projection coordinate p that will be influenced by a point in the 2-0 function

located at r = (Irl,8) = [r cos 8, r sin 8]. As is apparent from Figure 1, r must be located

on the line normal to n at a perpendicular distance from the origin defined by

p = r cos (8-1) = (r cos a cos r sin sin )=r. (1)

Hence, multiplying f(r) by S(p - r n) collapses the area integral to a set of line integrals

for the azimuth defined by i, giving

)~(,, =d'r f(r) 6(p - r it.(2)

The transformation has mapped the Cartesian coordinates [x,y] to a new system (p,,),

which is called Radon space. We have a choice about the limits on the new coordinates. If

we consider p to be bipolar (-- < p < -), then X(p,o) = X(-p,o rn). We may therefore limit

4 to the region (0 <_ <i). If we require p to be positive, then 0 runs over 2w radians.

The former choice is usually preferred, since it simplifies the mathematical development. 1

plot of the Radon transform in (p,#) space (Figure 2) is termed a sinogram, sin'e a point in

Cartesian spa:e maps to a sinusoid in Radon space. From eq. (2), it is easy to see that the

Radon transform is linear and space-variant. It is often convenient to express the

projection operation in operator notation, e.g. RI[f(r)] = ),(p,o), where the subscript

denotes that the function being transformed is two-dimensional.

The projection operation described by eq. (2) can be easily extended to functions of

higher dimensionality (Barrett, 1984). For example, a 1-D projection of a 3-0 function can

be obtained by integration over parallel 2-0 planes. Hence the 1-0 Dirac delta function in

eq. (2) now reduces the volume integral to a planar integral. The transform collapses the

3-0 function f(x,y,z) to a set of 1-D projections (e.g. X(p,o,8) parametrized by the :wo

. .-.
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angles defining the unit normal to the planes of integration.

1.B.2. Central-Slice Theorem

I Now that the forward Radon transform has been defined, we need to investigate its

properties that may be useful for signal processing. Foremost of these is the central-slice

theorem, which relates the Fourier transform of a 2-0 function to the 1-0 Fourier

9 transforms of its projections. The theorem arises because the kernel of the Radon

transform is a Dirac delta function of the scalar product of the c:onjugate variables r and p, ,

as the kernel of the Fourier transform is a function of the scalar product of conjugate

WIB variables r and p. As is customary, we define the Fourier transform of a 2-0 function f(r)

as

S1-" 2 [f(r)- F(p) = d'r f(r) e- 2 wivr, (3)

where J12 is the 2-D Fourier transform operator from coordinate r = [x,y] to spatial

frequency p = [&,n I. In this notation, functions denoted by a lower-case character are

the coordinate-space representation (e.g. f(r)), while-the corresponding frequency-space

representation is signified by the upper-case character (e.g. F(p)). If we perform the 1-0

Fourier transform of the projection defined by eq. (2), we obtain

[X(p,o)] 3 A(v,o) = dp X(p,O) e- 2 wipV. (4)

Substitution of eq. (2) into eq. (4) yields

A(v,*)=J -adp J d'r f(r) 5(p - r n) e-2 1iP v . (5)

*Exchanging the order of integration, we obtain
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[MFlob d=r f(r) dp 6(p - r * n) e-2ipv

dt r f(r) e-16~.(6)

Comparing eq. (6) and eq. (3), we can identify the relation between A(v,o) and F(p):

A(v,$) = F(p) F(n~v). (7)

So the 1-D Fourier transform of a Radon projection at azimuth angle $ relative to the x-

axis yields one line through the origin of the 2-D Fourier transform of the function f(r).

This line (central slice) in Fourier space is oriented at the saF.e azimuth angle *, but

relative to the &-axis (Figure 1). The central-slice theorem can be represented in operator

notation by:

It is important to note that the 2-0 frequency-space representation generated via the

Radon-Fourier transform has a sampling density in Cartesian space that falls off as v-1

(Figure 3). This sampling nonuniformity must be compensated whenever a Cartesian-space

representation is derived from a Radon-space representation, e.g. for display of the 2-0
Fourier transform, or (as will be shown) when reconstructing the 2-D source function via

the inverse Radon transform. Also note that the duality of coordinate- and Fourier-space

representations ensures that a dual to the central-slice theorem exists. That is, the inverse

Fourier transform of a projection in Fourier space is a central-slice of the coordinate space

representation of the 2-D function.

A theorem similar in nature to central-slice relates parallel projections weighted by a

phase factor to parallel, rather than meridional, lines of the 2-D Fourier transform (Farhat

%A
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et al., 1983). If a weighted projection is defined as

q(x,n) dy f (x,y) e:2vinY y (9)
*-ft

the 1-D Fourier transform of the weighted sl~ce is found to be:

dx q(x,n,) e2vi 9x j dx dy f(x,y) e2 1i( x + nY)

-Q , o,* •(10)

Systemns for optically generating and processing weighted projections have been proposed

(Gmitro et al., 1983), but are substantially more complicated than comparable systems for

central slices.

1.B.3. Filter Theorem

Another very useful attribute of the Radon transform may be derived easily via the

central-slice theorem. Consider the convolution of two 2-D functions f(r) and g(r). Using

operator notation, we can take the 2-D Fourier transform of the convolution:

,,[f(r) g(r)] = , [f(r)] x 54 [g(r)] • (11) -

Eq. (11) can be rewritten using the operator notation for the central-slice theorem [eq.

(8)], giving:

g] = ~R, (f g] R

=j~ o '.VYx X x 9X g (p,,)] = Af (v,o) x Ag (v,O) (1)

where the subscripts f and g are used to denote which function is being projected at the

common azimuth angle *. Applying the inverse 1-0 Fourier transform operator to eq. (12)

yields:

' R tf f g = R [f" g] =f-g

,d ...,-,JL. ," '*...'--"." " ,."-*.-", - , ,'*-' '-' . *. ."-. . . -' .. : " " " " - .- '. :



-10-

(AfX Ag] J -' [Af].% -i [Ag]

- f Xg , (13)

where the common coordinate variables have been suppressed. In words, this shows that

the projection of a 2-0 convolution of two functions is the 1-D convolution of the

projections of the functions. From this conclusion, it is just a very short conceptual hop to

the realization that the same relationship holds for 2-0 correlations. Thus, we now have
fr

the mathematical capability of deriving the projection of a 2-D filtering or correlation

operation simply by performing 1-D filtering or correlation of the projections of the original
S!

functions. This is a very powerful result and holds much promise for application to optical

processing.

1.5.4. Inverse Radon Transform

Since most of the research into the Radon transform has been directed at the solution

of inverse problems, there has been a plethora of publications devoted to the inverse Radon

transform. Therefore we shall limit our mathematical discussion to a straightforward

derivation of the inverse transform, with some comments made about algorithms appropriate

to optical reconstruction methods. Readers- interested in an in-depth mathematical

development should consult some of the other literature, notably Rowland (1979), Deans

(1983), and Barrett (1984).

The inverse Radon transform is most easily derived by applying the central-slice

theorem to the polar form of the inverse 2-D Fourier transform:

F(p) f(r) = 0 do o F(P) e 2 w iT0 * (14)

J -1

Invoking the central-slice theorem [eq. (7)], we set P = nv, p = v, OP = *, and F(p) =

F(ftv)= A(v,$) in eq. (14), yielding:

7•a i__I..-&..-.
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f(r) = do dv Ivi A(v,*) e+2'ivn'r
JI J -4

do v lvI A(v, 1 p rin (15)

This is one form of the inverse Radon transform. In words, it reconstructs a 2-D function

f(r) from a complete set of projections .(p,o) by the following steps:

(1) 1-D Fourier transform X(p,o), yielding A(v,o);,.p.

(2) multiply by vi I

(3) inverse 1-D Fourier transform the product [lvI A(v,#)];

(4) smear this 1-D function perpendicular to the line defined by p = r ;

(5) sum over all angles .

Step 4 generates a 2-0 function from the 1-0 projections and is referred to as 'back-

projectiono since it is the complementary operation to projection. Step 2 is a filtering

operation in Fourier space to correct for the sampling nonuniformity of the transformation

from Cartesian to Radon space mentioned previously.

It is instructive to rearrange the steps to obtain another recipe for the inverse

transform. Back-projection and summation (steps 4 and 5) may be performed first to

generate a 2-D unfiltered summation image (sometimes called a 'layergran'). The point

spread function of the layergram has been shown to be p(r) = Jr-' (Peters, 1974), which

implies a transfer function . [Irl-' = I*1". This distortion may be corrected by

filtering in 2-0 with transfer function Ip , an operation commonly known as 'rho-filtering'

(often, albeit imprecisely, the 1-0 filter Ivi in step 2 is also referred to as a rho-filter).

In reality of course, the noise dominant at high spatial frequencies requires either filter to

be rolled-off, or "apodized.' Since our rationale for signal processing in Radon space was

................................ . .

4P:~.- *
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to avoid unnecessary 2-D operations, we shall not consider implementations of the

alternative recipe. Interested readers should consult darrett and Swindell :1977, 1981) or

Larrett (1984).

We can also express the inverse Radon transform in operator notation (Barrett, 1984),

expanding the operator PR(- into the sequences:

= P," ,. 2  , (16)

where B is the operator notation for back-projection.

The inverse Radon transform algorithm [eq. (15)] can be recast into a more concise

form by invoking the filter theorem of Fourier transforms to create a convolution of

functions instead of a product of their Fourier transforms. That is,

[ l Av, ) 1 h(p) " (p,;), 117)

where h(p) = 1 [( ] is the filter function in the coordinate space representation.

• Lighthill (1962) showed that h(p) = p-L [ i I = where the singularity at the

origin requires that it be interpreted as a generalized function which has a Dirac delta

function at the origin. A realizable interpretation is (Gmitro et al., 1980)

h(p) = lim [T IPI (18)

C4 Ipl < I
Note that h(p) is bipolar. We can now represent the inverse Radon transform in one

equation, with the important proviso that the true nature of the filter function be

recognized:

If(r) 1 dF () (19)
1; d ,p, p= r V

" * : * ' "J ** -'" " ',, ' " *. .l - * . . '. . . "' " " J' ' '' ' t ': r d ' ' ' " ' "
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The operations required to implement this algorithm for the inverse Radon transfon are the

source of its common name, filtered back-projection. Integration of the convolution

product by parts yields other possible expressions for filtered back-projection (Barrett,

1984):

f~r = P do (20)) p" n
I

1 (1

Ip)"(p,*) *In IpIiI (21)

1 " (22
do [ ;(p,#)" In 1Pl] = ) (22)..-

1171 IP uY~L U~J*I~ip r n

where P [f dx] denotes the Cauchy principal value of the integral, and the primes (e.g.

'(p,#) ) represent derivatives of the function with respect to p. Each representation of

the inverse Radon transform (eq. (19-22)] requires a bipolar filter function, a fact having

important consequences for optical implementation. Which representation is optimum

depends strongly on the limitations of the signal and available hardware. For instance, the

dynamic range of the 1-D filter function In jpj in eqs. (21-22) is much less than that of

* -P2 or Pip'], thus reducing the dynamic range required of the 1-D convolver at the cost

of increased noise inherent in taking the second derivative of the projection.

An alternative development of the reconstruction problem was made independently by

* Cormack. Though not as straightforward in application as filtered back-projection, we shall

discuss it briefly because it can potentially be implemented by optical methods (Ein-Gal,

1974) (Hansen and Goodman, 1978). Cormack's development is based on the periodicity in

angle of every physically realizable object, i.e. f(r,O = f(r,8 + 2w). As a result, f(r,e) can

be expanded in a discrete Fourier series of angular basis functions, which are called circular

S%
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harmonics:

f(r,) = ~ fn (r) eine (23)

where

fn (r) = .- dO f(r,B) e-in e. (24)
2 -a

Cormack expanded the projections X(p,o) in the same manner and derived the space-variant

transformation between these two representations. The transformation can be made space-

invariant via a Mellin transform (Casasent and Psaltis, 1977), and can then be processed by

optical methods (Hofer, 1979) (Hansen, 1981a, 1981b). However, the Cormack

reconstruction algorithm is not directly applicable to our task at hand, so we shall not

consider it further.

I.C. Application to Optical Signal Processing

To summarize the mathematical development, we have demonstrated that the classic

2-D signal-processing operations of Fourier transformation and convolution (filtering) can

be performed via the equivalent 1 -D operations on the Radon projections, producing central

slices of the 2-0 Fourier transform or projections of the 2-D convolution. Of course, there ,.

are optical methods available for performing these 2-D operations as well. Coherent

computation of the of the 2-0 Fourier transform has always been the basis of optical signal ,%

processing, but limitations of speckle noise and performance of available spatial light

l -odulators have generally restricted application to static film transparencies in liquid

gates. By placing the input in the front focal plane of the transform lens, the correct

magnitude and phase of the 2-0 Fourier transform are produced in the back focal plane

(limited by lens aberrations). However, the phase of the transform is coded in the relative

0.

I . 5. . .,- 5 .S * S . * S . ' *5'-. . . . . . - - , , . * S-4,' *: . ' * . .. * . r. * . • .. . .. . . , ..' ' : ',-: . . -. . .* . ' -.. .:, .-.. ._*_
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phases :)f the coherent wavefront at the various locations in the Fourier plane. Preserving

this phase information requires a very precise and stable optical configuration, and square-

law detection necessitates heterodyne techniques to decode it. Optical

convolution/correlation can be performed by spatial filtering in the Fourier plane or by a

joint transform arrangement (Weaver and Goodiman, 1966) (Rau, 1966). Problems still

abound, however. The stability and positioning requirements are stricter yet, generation of

a true complex (magnitudle and phase) spatial filter is nontrivial, and deriving the phase of a

complex convolution remains difficult. Incoherent optics avoids the speckle noise problems,

and architectures are available for performing Fourier transformation and convolution F

(Rogers, 1977) (Monahan et al., 1977), but representation of negative quantities requires a

bias or two signal channels.

Oni the other hand, the corresponding 1 -D operations of Fourier transformation and

convolution can be performed readily and rapidly by devices based on electronics, acoustic

interactions, or charge transfer. dy constructing optical systems to perform the

dimensional transduction to and from Radon space, we can utilize these technologies to

-perform the corresponding 2-D operation. B3y so doing, we may be able to loosen the

constraints on signal input format and system stability, at the cost of some processing

parallelism. The resulting hybrid systems can emphasize the strengths and minimize the

weaknesses of each technoogy. If the optical dimensional transducers and the 1 -D F

processors are fast enough, we may still be able to perform the complete 2-0 processing

operation at a usefully rapid rate, e.g. 3o) frames/second.

l.C.1. Optical Radon Transformr

The forward Radon transform (eq. (2)] is generated by integrating the input function

f(r) along the set of lines perpendicular to the azimuth (0. This can be done optically in

several ways, depending on the format of the input data and the type of signal processor to
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be used. Radon projections can be generated as temporal data by scanning the input

function with a line of light (usually from a laser) and integrating the resultant intensity on

a detector. This method is suitable for transmissive or reflective input data. At one

instant, the detector signal is proportional to the line integral of input transmittance or

reflectance. Sweeping the line of light perpendicular to itself generates a temporal signal

proportional to one line-integral projection. The azimuth of the scan can be optically

rotated (e.g. by a dove prism) to sequentially derive the complete set of projection data.

For obvious reasons, this optical Radon transformer is called a flying-line scanner, and is

shown schematically in Figure 4 (Easton et al., 1984). Since the light transmitted or

reflected by the 2-D input is integrated on the detector, speckle noise is irrelevant, and a

laser can be usefully employed as a light source. Indeed, the coherence of the laser

becomes an advantage, as it allows the use of a fast acousto-optic beam deflector, ar a

slower and cheaper holographic deflector ('hologon scanner'). The technology of optical r

scanners and image rotators permits a system to be built capable of performing Radon

transforms at video rates with video resolution (30 frames/sec, 500x500 points). This

would require scanning 500 azimuth angles with 500 resolvable data points per scan every

30 mS. Acousto-optic Bragg-cell scanners capable of resolving more than 1000 points per
e

10 u5 scan have been reported (Gottlieb et al., 1983). To preserve the phase of the

projection, the temporal center of the flying line scan must intersect the image rotation

axis each time, i.e. the optical rotation axis of the prism must not wobble. Scanning a full

projection set in 30 mS requires an image rotation rate-of 180'/30 mS = 900 RPM, implying

a prism rotation rate of 450 RPM. Such systems hav,' been constructed and demonstrated

(Cmitro and Gindi, 1985). Indeed, much higher rotation rates have been reported while

preserving holographic image quality (Stetson and Elkins, 1977). Radon transformers based

on the flying-line scanner are most useful for 2-D signals on transparencies (e.g. movies)

S .
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or for real reflective scenes.

Projection data can also be generated by 'collapsing* an image of the 2-D signal onto

* a linear array or imaging detector with anamorphic optics (Figure 5). The anamorphic

optical element can be a cylindrical lens (Gindi and Gmitro, 1984), or a coherent optical

fiber bunidle (Farhat et al., 1983). Alternatively, if an N-element 1-D linear array

* detector can be obtained with an aspect ratio of N:1, anamnorphic imaging is unnecessary.

An array detector samples the projection, making this arrangement especially useful if the

data is to be processed digitally. An image rotator is still required and hence the

V projections are again generated sequentially. This type of system is adaptable to naturally

illuminated scenes or to self-Iwninous signals, as from a CRT.

l.C.2. 1-D Signal Processor Technologies

* As was demonstrated in eqs. (19-22), the inverse Radon transformation requires

convolution of the projection data with a bipolar 1 -D filter function. Thierefore we shall

now shift gears somewhat to investigate the types and capabilities of available 1-D signal S

processors. These will be lumped into four categories: electronic devices (both digital and

analog), charge-transfer devices (mainly CCDs), acousto-electric devices (primarily those

based on surface acoustic waves, or SAWs), and acousto-optics (AO). In the first case, the

Radon transform allows direct application to 2-D problems of the very technologies that

optical methods are supposedly competing against on the signal -processing battlefield.

I.C.2.a. Electronic Systems

Electronic systems (analog and digital) for processing temporal signals are no doubt

familiar to the reader. They can be as simple as an RC filter or as complex as a digital 4

supercomputer. The accuracy, precision, stability, and flexibility of electronics are 4

products of many decades of theoretical and engineering effort, with the result that

electronic systems are generally preferred for signal -processing applications. This is the

S
...............................................*..*. * .' .. ~~***P,
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target it which proponents of optical signal processing must aim, but it is moving ahead all

the time. New materials, such as GaAs, and new fabrication technologies, such as x-ray

lithography, promise further improvements in packing density, speed, and cost of electronic

devices. Even the traditional advantage of parallelism offered by optical processing is

fading, as new algorithms and chip architectures are adding parallel capability to the

electronic world.

Electronic signal processing is generally divided into analog and digital domains, each

having its ownt advantages and disadvantages. Analog processing represents signal

amplitudes by proportional voltages that can be added, subtracted, and divided. Some

nonlinear operations (e.g. thresholding) are easily performed as well. Analog processing

with active and passive components can be fast, with bandwidths reported to = 2 GHz for

silicon devices and up to 20 CHz for GaAs (B~ierman, 1985). MAore complicated operations

(e.g. multiplication, root finding) are possible with special analog modules, but operation is

much slower and subject to severe limitations in linearity, stability, and precision. For

4 some applications, the restrictions can be eased by using the analog voltage signal to

modulate a radio-frequency (RF) carrier. RF devices capable of several useful operations

are available, including multiplication, phase shifting, and phase detection. Though still

e limited in linearity and stability, these devices can be profitably used for analog signal

processing.

The advantages of digital systems are well known--probably too well known to the

optcical processing community. But they have their limitations too, lack of speed and large

power consumption being two of the most important. Sampling limits system bandwidth and

subjects the sampled signal to aliasing. A/D and D/A conversions may have to trade speed

for precision and dynamic range. Clock rates are limited to z5OO MiHz for silicon-based

logic. However, improvements are being made continuously. For instance, the increased
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mobility of gallium arsenide charge carriers allows cock rates up to several GHz with lower

power consumption (Bierman, 1985). Generally the limited disadvantages of digital

* processing have been more than offset by its inherent noise immunity and linearity. An

unlimited variety of signal-processing operations are amenable to solution by digital means,

and new special-purpose hardware promises to increase speeds dramatically. The very-

high-speed integrated circuit (VHSIC) program of the Department of Defense is stimulating

the design and production of new devices, such as the Westinghouse complex arithmetic

vector processor, which can perform a 1024-point 16-bit complex Fourier transfonn in

130 US, compute one point of a 256-element 16-bit correlation in 6 UiS, and multiply a 64x64

16-bit matrix by a 64-element vector in 35 jaS (Marr, 1982). Digital parallel operation is

becoming more economical as design costs drop and fabrication yields increase, but cost is

%P still a significant limitation for such devices and is likely to remain so.

I.C.2.b. Charge-Transfer Devices

Charge-transfer devices can store and manipulate packets of electronic charge using

two structurally different circuit technologies. The older 'bucket-brigade' device is a

series of MOS transistors and capacitors, where the charge is moved between capacitors by

alternate switching of the transistors. These have been largely superseded by charge-

coupled devices (CCDs), where minority charge carriers are stored under closely-spaced

electrodes. Charges are moved to detectors at the edges of the array by sequential pulsing

of the electrodes. The most familiar use of CCD devices has been as 1-D and 2-D optical

Jetector arrays, where the amount of charge in a detector cell is proportional to the photon

flux. However, it is also possible to use them as signal processors, where the sampled data

values are denoted by the varying amounts of charge . By moving, summing, and detecting

lthe charge packets in various ways, a variety of processing operations can be performed.

The resulting devices are an interesting hybrid of analog and digital qualities, since the

--
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amplitude of each discrete sample is a continuous variable. CCDs can obviously be used as

deiay lines, with applications to signal time and bandwidth compression. Tapped delay lines

I and fixed-transversal filters can be constructed by spacing nondestructive charge detectors

along the charge pathway and summing the tapped signals (Buss et al., 1973) (Beynon and

Lamb, 1980). 'With variable weights, the filter is programmable. Multiplying adjacent

5tapped signals from two CCD delay lines and summing the products allows computation of a

discrete convolution. The useful dynamic ranrge of these CCD devices is limited by the

quantum noise floor and the saturation level, with typical specifications of 60-70 d (30 dd

for the convolver, . The bandwidth of the CCD devices is determined by the analog

electronics and the sampling clock rate, ranging from a few Hz to 5 1-Hz.

By combining the CCD devices described above, a wide variety of 1-D signal-

processing operations is possible. The utility of fixed and programmable CCD transversal

filters and of the CCD convolver for signal processing is obvious. Using two or three filters

with linear FM (or chirp) impulse responses, the chirp z-transform algorithm can be

6IP impigmented (Rabiner et al., 1969). This algorithm will be discussed in some detail later.

CCD spectrum analyzers using the chirp z-transform algorithm have been demonstrated

which are capable of computing a 512-point z-transform at a 5 AHz sampling rate.

I.C.2.c. Acousto-Electric Devices

Piezoelectric materials distort when placed in an electric field, and also they generate

a field when mechanically stressed. By applying a modulated RF electric field to a

lip piezoelectric medium, a corresponding acous-,c distortion is generated which can be

processed and detected. This acoustic wave propagates in the medium at a characteristic

velocity v. . 10-5 c. Thus, the acoustic wavelengths are much shorter than the

electromagnetic wavelengths, allowing signal processing devices that are many wavelengths

long to be constructed in small packages. Components based on acoustic waves in bulk

C .,
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materials, such as the quartz oscillator and delay line, have been used for many years.

More recently, however, much attention has been paid to using acoustic waves in tile

111 surface of a mediumi (surface acoustic waves or SAVs) due to their accessibility. Once a

wvave has been generated on the surface of a medium, it can be sampled at any point in its

journey along the surface. A diagram of a simple SAW device is shown in Figure 6. A pair

* of conductive transducers is deposited on the surface of the piezoelectric crystalline

medium. The input signal (often on a carrier) is applied to the input transducer, consisting

of a set of interleaved 'fingers' connected to buss bars. The field distorts the medium

* piezoel ect ric ally, and the acoustic wave travels along the surface of the crystal to a similar

transducer where it generates an electric RF signal.

If we think of the SAW device in Figure 6 as a delay line, the sampling of the acoustic

* wave by the output transducer is a tapping and summing operation performed in parallel for

inany points in the acoustic wave. Hence, the SAW device is another example of a

transversal filter. Variation of the spacing and overlap of the transducer fingers produces

* different impulse responses, allowing a wide variety of operations to be performed. The

utility of SAW filters is such that several design procedures have been developed (Matthews,

1977) (Gerard, 1978), and the filters themselves are manufactured by standard

fo photolithographic techniques (Smith, 1978). SAW bandpass filters are available for center

(carrier) frequencies from 10 MHz to 2 0Hz and bandwidths from (100 kHz up to 50%. of

center frequency (Morgan, 1985). The noise-limited dynamic range is typically 70 dB,

V comparable to that available from CCIDs. Indeed, it is interesting that CCDs and SAW

devices are so complementary, offering similar signal processing capability over a wide

range of input frequencies (Roberts, 1977).

fe Linear FM, or chirp, SAW filters are easily made and have found wide application to

radar systems (KlaLuler et al., 1960) (Gerard et al., 1973). More recently, they have been
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employed in spectrum analyzers and Fourier transfonners (Jack and Paige, 1973) (Jack et

al., 1980). The transducers are designed such that the impulse response of the filter is a

signal of linearly increasing or decreasing frequency. SAW interdigital chirp filters are

limited to bandwidths of about 500 MHz, dispersion times of 50 iMS, and effective time-

bandwidth products of about 1000 (Morgan, 1985). Frequency dispersion can also be %

J achieved by spacing acoustic reflectors on the substrate. These so-called reflective array

compressors (RACs) have been reported with bandwidths to 180 MHz, dispersion times to

90 uS, and time-bandwidth products of 16,200 (Gerard, et al., 1977).

Other useful SAW signal processors can be made by utilizing the nonlinear response of

the substrate to severe distortions. If strong acoustic signals are applied to each end of a

substrate, the two waves will interact nonlinearly to generate higher harmonics. The

frsecond harmonic of the carrier frequency contains information about the product of the two

signal amplitudes. Integration of the second harmonic frequency over the substrate by an

area electrode produces a temporal signal proportional to the convolution of the input

signals. Since second harmonic generation is inefficient, the convolution signal will be

weak, typically 80 dB below the input signal levels. Even so, noise-limited dynamic ranges

of 60 dB, and spurious-signal-limited dynamic ranges of 30 dB have been reported (Ash,

1978). Acoustic convolvers are available commercially with time-bandwidth products

approaching 2000 (Morgan, 1985).

I.C.2.d. Acousto-optics

Acousto-optic processors are reviewed in detail elsewhere in this volume, so we shall

discuss their capabilities only briefly. As mentioned above, an RF electromagnetic wave

can be transformed into an acoustic wave in a medium via the piezoelectric effect. The

tvariation in material density modulates the refractive index, producing a phase grating

which can diffract light. Devices based on the interaction of sound and light have long

S3
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been used in signal processing as efficient 1-D spatial light modulators and beam deflectors

(Korpel, 1981). Developments in materials and architectures in the last 15 years or so have

* led to new applications for bulk A-O devices in signal processing, including time-integrating

and space-integrating correlators/convoivers (Berg et al., 1979) (Rhodes, 1981a)

(Abramovitz et al., 1983), Fourier transformers (Lee et al., 1982) (Pancott and Reeve,

9 1985), and generation of 1 -D time-frequency representations (e.g. the Woodward ambiguity

function) (Athale et al., 1983) (Casasent, 1983). The interaction of light and surface

acoustic waves has also been applied to various signal processing operations (Das and Ayub,

1982) (Casseday et al., 1983). Indeed, AO devices and SAW devices are inherently

compatible, for the obvious reason that the processing mechanism is so similar. Limits on

carrier frequency, bandwidth, and dispersion time are comparable for both types. AO

materials support carrier frequencies in the range of (1 MHz < ve <1 GHz), with

bandwidths of up to 500 MHz, interaction times of up to 80 US, and time-bandwidth

products greater than 10,000 (Berg et al., 1979).

*) I.C.3. Optical Implementation of the Inverse Radon Transform

Having discussed the technologies available for 1-D signal processing, we are now

ready to describe methods for reconstructing the 2-D processed signal from the 1-D

*projections. Two mathematical algorithms for reconstruction have already been discussed:

filtered back-projection and circular harmonic expansion. As stated, the latter is more

complicated to implement and not as appropriate for signal processing applications, and so

will not be considered further here. Interested readers should consult the work of Hansen

and Goodman (1978), Hofer (1979), Hofer and Kupka (1979), and Hansen (1981a, 1981b).

In our mathematical development of filtered back-projection, we stated that 1-D

* filtering can be performed before back-projection, or 2-0 filtering afterwards. Optical

reconstruction systems have been built which filter in 2-0 (Peters, 1974), but again we are

* oU
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more concerned with application of 1-D technologies to the problem. Several hybrid

optical system have been proposed or built to implement 1 -D filtered back -projection, anid

* we shall give a brief overview of those systems here. Readers desiring more detail should

consult the original papers or the review articles by Barrett and Swindell (1977) and Gmitro

et al. (1980). To lessen problems associated with coherent noise, these systems used

* incoherent illumination. However, it is essential to recall that the filtered projection is

bipolar, requiring that any reconstruction scheme preserve sign information. Because of

this constraint, systems based on incoherent optics must place the projection signal on a

bias or employ two signal channels. Neither of these alternatives is desirable; biased

signals reduce the contrast of the reconstruction, and dual-channel systems are subject to

differential signal errors.

After 1-D filtering, the algorithmns of eqs. (19-22) require two more steps; back-

projection and sunmation. Back -projection, i.e. generation of a 2-0 function from a 1 -0)

projection by 'smearing' perpendicular to the projection azimuth, has been demonstrated by

0 ananorphic optics. The projection is written on the face of a 1 -D display device (e.g. a

CRT or LED array) located one focal length from a cylindrical lens, and imaged onto an

integrating 2-0 detector or display device. As this operation is performed for each

* projection, the reconstructed image is built-up at the output plane. Any integrating 2-D

detector can be used for surnmation of the back -projections (e.g. photographic film, video

canera, or humaan eye if the system is fast enough).t

The hybrid optical-electronic reconstruction schemes have differed greatly in detail

and degree of success. The system of Duinker et al. (1978) was mostly based on analog

electronics, with only filtering performed optically. The projections were displayed in

sequence on a CRT and imaged onto two area-weighted optical masks representing the

positive and negative parts of the filter function. The images of the projections were

If
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swept across the filter masks by e!ectronic deflection, and the integrated transmitted

signals electronically subtracted to obtain the bipolar temporal filtered signals. Back-

projection and summation were performed electronically. Edholm et al. (1978) stored the

Radon projections on film in sinograrn format ,(p,o). A filtered, biased sinogram was

generated by sandwiching a positive image of ;k(p,#) and a negative image of

* X)(p,o) * h.(p), where h.(p) represents the negative part of the filter function in eq. (18).
..

Back-projection was performed for each line of the sinogram by a cylindrical lens, with

summation on a suitably rotated piece of photographic film. Despite the dynamic range

limitation inherent in the use of a bias, this system produced some good recoastructions.

Probably the most successful incoherent optical reconstruction systems synthesized the

required filter function by OTF synthesis. This method is based on the fact that the OTF is

p the autocorrelation of the pupil function (Lohmann, 1977) (Rhodes, 1977) (Rhodes and

Lohmann, 1978) (Stoner, 1978). Two pupil functions are calculated for which the

difference of the autocorrelations is the Fourier transform of the required filter point

spread function. An infinite number of pairs of pupil functions are theoretically possible,

with the optimum choice determined by system requirements such as light throughput or

noise considerations. Since the required positive part of the filter psf is a delta function

[eq. (18)], a clear pupil in the positive channel is appropriate. Two negative-channel

pupils successfully demonstrated are the so-called Ronchi pupil (Barrett, Greivenkamp et

al., 1979), and a logarithmic phase plate (Barrett, Chiu et al., 1979). The envelope of the

point spread function of either pupil falls off as 1/p', as required. Optical reconstruction

systems based on OTF synthesis include the drum processor (Gordon, 1977) (Cmitro et al.,

1980), the loop processor (Greivenkamp et al., 1981), and a hybrid digital-optical system

(Gmitro et al., 1980). An example of image reconstruction with the loop processor is

shown in Figure 7.

Soo
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A reconstruction system that is most applicable to tomographic signal processing tasks

was proposed recently by Gmitro and Gindi (1985). It is capable of performing a 500 x 30U

point reconstruction of projection data at video rates. The system, depicted in Figure 8,

implements the algorithm of eq. (19). Filtering is performed by a space-integrating

acousto-optic convolver, as shown in Figure 9, though a SAW convoiver could be used as

suggested in section I.C.2.c. The projection data are stored in a fast digital memory and

read out line-by-line to a fast D/A converter. The analog signal modulates an RF carrier

and is then impressed on a Bragg cell. The diffracted light is Fourier transformed by a lens

and filtered by a spatial binary transmission mask. The diffracted light is retransformed,

collected by the detector, and demodulated. The filtered projection is displayed on a CRT L.
60

and back-projected by a cylindrical lens. Azimuth selection for the back-projection is

q* accomplished by an image-rotating prism, and the 2-0 image is collected by a video camera

and displayed on a conventional CRT. The image data are read out rapidly enough for r

operation at video rates (30 reconstructed frames/second). The design goal is to process 6

projections at video rates with a dynamic range of 12 bits, implying a signal-to-noise ;atio

of about 4000. Preliminary results are presented in Figure 10.

~~~~~~~~~~~~~.... ,..............-...........• ,..-. ' ';. . v',-'.' .-'-'. '-'.
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I I. Applications

I I.A. Operations on 2-0 signals

5 As was evident from our mathematical development, the application of the Radon

transform to signal processing primarily exploits the central-slice and filter theorems, which

allow operations based on Fourier transforms and/or convolutions to be performed on the

1-D profections. Useful operations of this type include the Fourier transform and its

relative, the Hartley transform, 2-0 filtering, some pattern-recognition algorithms,

bandwidth compression, and spectrum estimation. Some of these operations require the

S flexibility of digital operation but are included to indicate the scope of application of Radon

methods. Since application of projection operations to signal processing is a field that has

yet to be fully plowed, much of our treatment will deal with feasibility rather than actual

6 results.

I I.A.1. Fourier Transformation

Since it is a signal-processing staple, and also because of its close relationship to the

01 Radon transform via the centrai-slice theorem, it seems natural to commence our discussion

of applications with 2-D Fourier transformation. After having been generated by one of

the systems described in section I.C.1., each projection is Fourier transformed and the

result is displayed in the polar format required by the central-slice theorem. To perform

the 1-D Fourier transform, we introduce the chirp transform algorithm, which is derived by

decomposing the Fourier kernel:

e 2 wivt = e'lr( ")Z x e - iW(Bt)2 x ew('± - 6t)2 . (25)

The three complex exponentials are quadratic phase terms or linear FMi signals, i.e. the

instantaneous frequency of each varies linearly with time. Such signals are commonly

called chirps by the radar community. The factor B, with dimensions of temporal

IeJ0
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frequency, has been introduced to rationalize the units of the exponent. A 1-D temporal

Fourier transform can now be written:

* r
F(v) = dt f(t) e- 2 1iv t

J-I

S-eif( )Z dt I[f(t) e-iT(Bt), I x ei (! - at),

=e-iv(St)2 x [[f(t) e Br(st) ] * e iW(Bt) 1 I I (V = 81t) (26)

Thus, by employing three temporal chirp signals (one with positive exponential term, or

upchirp, and two with negative terms, or downchirps), the Fourier transform of f(t) can be

implemented in three steps:

(1) multiplication of f(t) by a downchirp;

OP (2) convolution of the product in a filter with an upchirp impulse response;

(3) multiplication by a downchirp.

The resulting temporal signal is a scaled version of the Fourier transform, where the

frequency is related to the output temporal coordinate by v = Olt. The pre- and

postmultipliotion chirp signals can be generated by applying impulsive inputs to filters with

upchirp impulse responses. Note that this analysis has assumed that the chirp signals are

complex and of infinite length. If only the power spectrum is required, the

postmultiplication in step 3 can be eliminated. Because of the order of operations, this

algorithm is usually referred to as the M-C-M chirp transform, for multiply-convolve-

multiply. The duality of multiplication and convolution in coordinate and Fourier space

imply that the operations can be exchanged to produce a second arrangement for chirp

transforms, the C-M-C transform (Jack et al., 1980). It has the disadvantage of requiring

three filters even if only the power spectrum is required. For sampled data, Fourier

* Ii
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transformation is equivalent to evaluation of the z-transform on the unit circle. The

comparable implementation using sampled chirps is therefore called the chirp z-transform

(Rabiner et al., 1969).

It is instructive to reconsider coherent optical Fourier transformation in light of the r.

chirp transform algorithm. Propagation of light in the Fresnel region can be described as

convolution of the wavefront with a quadratic-phase impulse response, and the action of a

spherical lens on a wavefront is multiplication by a quadratic phase, so the common 2-f

coherent Fourier transformer is a version of the C-M-C chirp algorithm. An optical version

of M-C-M is also possible (Whitehouse, 1977).

The chirp Fourier or z-transform can be implemented for real 1-D data (as would be

obtained from a flying-line scanner) using the technologies described previously, but the

OP analysis differs somewhat from that given in eqs. 25-26. A basic temporal signal filter has

a real, finite-length impulse response, often modulating a carrier. For example, the impulse

response of a SAW chirp filter is of the form

h.(t) -A(t) cos',t ± t- , (27)

where A(t) is the apodizing function of the filter, w, is the initial carrier frequency, and a

is the 'chirp rate', or rate of change of the instantaneous frequency. For SAW filters, the

carrier frequency w. is in the RF region (=15 - 300 MHz). The frequency of h.(t) rises

with time, so this function is again called an upchirp. Using these realizable filters, the

chirp Fourier transform may still be implemented, but the phase of the transform is now

determined relative to the phase of the carrier (Jack and Paige, 1978). The recipe for the

chirp transform becomes:

Ip (1) premultiplication by a downchirp;

(2) convolution (filtering) with an upchirp;

S.I . . . . . . . . . . . . . . . . . . . . . . . .. . . . . ~ . . . . . . . .
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(3) postmultiply by two upchirps separately, with phase difference of ir/2;

(4) low-pass filter both signals from step 3.

The complex transform is thus generated as two parts simultaneously. The signal derived

from the in-phase chirp of step 3 is the real part of the complex Fourier transform, or

cosine transform. The quadrature signal yields the sine transform, or imaginary part of the

Fourier transform. Note that the sign of the slope of the postmultiplication chirp differs

for the realizable algorithm relative to that for complex chirps. This is due to double-

sideband multiplication of the carrier-borne signals, which yields signals at the sum and

difference frequencies of the carriers. By selecting the difference frequency sideband with

the low-pass filter, the operation is equivalent to postmultiplication by a chirp of the

opposite sign. The output temporal signal maps linearly to frequency with constant of

proportionality a. Since the real chirp signals are apodized by A(t), their time-bandwidth

product (TBW) is finite, thus limiting the frequency resolution of the transformer. The

maximun system TBW is one-fourth the TBW of the convolution chirp (Ash, 1978). It should

* be noted that the SAW chirp transform algorithm can also be implemented for complex input

data by premultiplying the imaginary part of the input signal by a chirp in quadrature to the

real-part premultiplication chirp (Jack and Paige, 1978). Using surface acoustic wave

* reflective array compressive filters, a system capable of transforming signals 60 4S long

with 60 ,MHz bandwidth was demonstrated by Gerard et al. (1977). SAW chirp Fourier

transformers are faster and require less power and bulk than all-digital systems, but are

less accurate.

The chirp Fourier transform algorithm can be implemented with AO devices as well.

Hotz (1984) and Pancott and Reeve (1985) have demonstrated Mt-C-M transforms using

• space-integrating architectures incorporating two Bragg cells. The 1-D input is multiplied

by an electronically-generated chirp signal in an RF mixer, and the product applied to one

'p
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Bragg cell. The *lst diffraction order is selected and imaged on the second dragg cell,

which is driven by the same electronic chirp signal. The -1st diffraction order emerging

from the second cell is selected, integrated on a detector, and demodulated. Hotz reports

a system bandwidth of 25 .AHz for a signal duration of 5 gS, limited by the capabilities of

the AO cells and by problems with generating the proper postmultiplication chirp slope.

Such a system has similar mechanical stability requirements as other coherent optical

systems, but are readily applicable to signal processing in Radon space.

II.A.l.a. 2-D Power Spectra

Ticknor et al. (1984) demonstrated production of 2-0 power spectra via the Radon

transform and the SAW chirp Fourier transform. Their system is diagrammed in Figure 11.

The Radon projection of a 2-0 transparency f(r) is generated by a Bragg-cell-driven

* flying-line scanner. One projection is derived in 10 u5 . Premultiplication by the SAW chirp

is performed in an RF mixer. This product signal is applied to the convolution chirp filter,

whose output is the Fourier transform on an RF carrier. Since the phase of the Fourier

* transform is not required, the output of the convolution filter is detected incoherently with

a diode, producing a unipolar signal proportional to the squared-modulus of the Fourier

transform. The SAW filters used had time dispersions of 10 MHz and bandwidths of 20 1jS.

0Power spectra were generated by the system within 28 uS after commencement of the

flying-line scan. The spectra were 20 MS long with 50 resolvable frequencies. By the

central-slice theorem, the detected signal must be displayed in a polar format to generate

one line through the 2-0 power spectrum. However, as the 2-0 spectrum is built up, the

polar raster oversamples the low spatial frequencies, producing a displayed time-averaged

intensity that is too bright in the center. Mathematically, this problem is due to the

sampling nonuniformity of the Radon transform, and is corrected by rho-filtering, i.e. the

central slices of the power spectrum are multiplied by lvi in an RF-mixer before detection.

p ... " .



-32-

After one transform slice has been displayed, the prism is rotated and a new projection

generated. The power spectrum of that projection is displayed at the new azimuth on the

CRT. Integration of the result can be done on film, or by eye if the system is fast enough.

System speeds up to 5 frames/sec. have been demonstrated, limited by the rotation rate of

the stepper motor driving the image rotator in the flying-line scanner. Results for a 2-D

* function are shown in Figure 12.

II.A.l.b. 2-0 Complex Fourier Transforms

The same group (Easton et al., 1985b) added a post-multiplication chirp to their system

to generate the complex Fourier transform, as diagrammed in Figure 13. The time delay of

the post-multiplication chirp is derived from a digital delay generator (1 ns resolution). To

obtain more precise time delay, the phase of the postmultiplication chirp can be varied with

*lb a continuously adjustable RF phase shifter. The postmultiplication itself occurs in an iF

phase comparator, which generates voltages proportional to the in-phase and quadrature

products of two input signals. The in-phase term is the cosine transform, and the

*) quadrature term is the sine transform. Performance of the complex SAW chirp transformer

is shown in Figure 14.

Rho-filtering of the complex transform before display is somewhat more difficult than

* for the power spectrum. The frequency of the demodulated signal is too low for

multiplication in RF mixers, and too high for analog multipliers. An integrated-circuit

balanced modulator was used instead. The two bipolar complex Fourier transform signals

qV were then biased up before application to the z-axis of the CRT. Results are shown in

Figure 15.

Since the phase of the transform is derived from the time differences of the projection

1 signal relative to the chirps, the coherence of the scanner beam is immaterial. This method

is therefore applicable to reflective scenes as well as to transparencies. An example of

",.,
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complex Fourier transformation of a reflective scene is shown in Figure 16.

Another 2-0 processing situation where Radon space Fourier transformation mnay prove

* very useful is with spatial light modulators whose image quality is relatively poor.

Recently, there has been much interest in applying an inexpensive liquid crystal television

receiver to optical processing operations (Liu et al., 1985) (McEwan et al., 1985). The poor

* phase uniformity of the LCTV limits its utility for coherent operations, though various means

have been suggested for improvement. Again, this is not a problem when used as input for

a flying-line scanner (Easton et al., 1985a). Some results in that application are shown in

Figure 17.

Farhat et al. (1983) also demonstrated 2-D complex Fourier transforms via Radon

space operations, but utilized a 2-channel incoherent optical correlator to generate the

*~ 1-0 transforms. A 2-0 complex signal was displayed on a CRT in two colors, e.g. real part

in red, imaginary part in green. The image was rotated by a dove prism, spectrally filtered

to separate channels, and collapsed to 1-D by two coherent optical fiber bundles. The real

* and imaginary 1 -0 signals were correlated incoherently with a fixed cosine and sine

reference mask, respectively. The 1-0 correlator outputs represented the real and

imaginary parts of the 1 -0 Fourier transform, which were then be detected and displayed in

C the polar raster. The system is fast, but also suffers from the familiar limitations on

bandwidth and dynamic range common to other geometrical -optics incoherent correlators

(Rogers, 1977).

llI.A.1.c. Hartley Transforms

A 2-0 operation that is receiving some attention in the signal processing community is

the Hartley transform (Bracewell, 1983) (Bracewell et al., 1985). For a 2-D function f(r),

* the Hartley transform is defined as:

.. . . -.. . .. . . . . . . . . .. . . . . . . . . .
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H(p) d2 r f(r) cas(2wr'p) , (28)
J - - -•

where cas(x) a cos(x) + sin(x). The kernel of the Hartley transform is again a function of

the scalar product of conjugate variables and is in fact the difference of the real and

imaginary parts of the Fourier kernel. Being purely real, the Hartley transform may be

preferred over the Fourier transform for digital computation, since the storage requirements

could be halved. Being a linear combination of the real and imaginary parts of the 2-0

Fourier transform, and hence of the 1-D Fourier transform of the Radon projections, the

Hartley transform is easily implemented in Radon space. By subtraction of the real and

imaginary outputs of the SAW chirp transformer with a simple difference amplifier, the 1-D

central slices of the Hartley transform are generated. They are displayed in the same

fashion as the Fourier transform.

I I.A.2. Filtering and Correlations

The filter theorem demonstrates that a projection of a 2-D convolution (correlation) is

the convolution (correlation) of the corresponding projections of the 2-i functions. Since

devices or systems exist to perform 1-0 convolutions (SAW devices, CCD convolvers, and

AO convolution systems), it is feasible to perform the 2-0 operations in Radon space

(Gmitro et al., 1983). With a fast 1-0 SAW convolver, such an operation can be performed

at video rates. A system capable of video-rate 2-D convolution or filtering is depicted in

Figure 18. The projections of the filter function may be generated as needed from a 2-0

image or stored in digital memory and read out through a fast D/A converter. A simulation

of 2-0 high-pass filtering is shown in Figure 19, where the projections were generated

optically, the 1-0 convolutions and rho-filtering perforned in a digital computer, and the

back-projection again performed optically.

., ,, .. : . , . ' . ..-,. .- . .. ,. .. . . - .. -- * *. - *1"
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If the projections of the filter function are stored in an addressable digital memory, as

suggested above, we have the capability to alter the impulse response of the 2-D filter by

updating its digitally stored 1-D projections. This could be useful if filtering a noise signal

which varies over time and would enable the application of 1 -D adaptive filtering methods

to 2-D situations. For example, consider a signal corrupted by noise. An adaptive filter

acts on noise in a reference channel (correlated in some unknown way with the noise in the

signal channel) to maximize the output sigr;il-to-noise ratio. This is accomplished by

adjusting the filter's impulse response to minimize an appropriate error signal. The filter

0 parameters are derived from correlations between the signals in the input and reference

channels--operations that can be legitimately performed on the Radon projections of 2-0

signals. In 1-0, the technique has been successfully applied to a number of problems, e.g.

telephone echo cancellation (Gritton and Lin, 1984), electrocardiography, and antenna

sidelobe interference (Widrow et al., 1975). To the knowledge of the authors, there is only

one demonstrated example of 2-0 adaptive filtering. Tao and Weinhaus (1985) applied

* adaptive noise cancellation techniques to removal of periodic signal-dependent noise in

digital imagery. By filtering the Radon projections with 1-0 updatable stored functions in

a 1-D convolver, these adaptive algorithms can be implemented while avoiding the

C limitations of available 2-0 hardware.

ll.A.3. Pattern Recognition 2

Some very useful pattern recognition operations can be profitably performed in Radon

space. We have already demonstrated generation of the 2-0 Fourier power spectrum.

Gindi and Gmitro (1984) have used optical methods to rapidly extract integrated features

of the power spectrum from the Radon projections. They have also demonstrated the

• feasibility of evaluating a set of invariant moments, deriving the Hough transform, and

finding the convex hull of a 2-U input by operations on the Radon projections. Since the

" .l " " -- ; " " " 
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first three operations are probably of most interest, we shall briefly discuss each.

I I.A.3.a. Fourier Spectrum Features

Optical computation of features in the Fourier power spectrum has been feasible for

some years and has been applied to some industrial uses (Casasent, 1981). The wedge-ring

detector was developed for use in a coherent processor to compute the energy in the power

P spectrum in discrete segments of magnitude and orientation of spatial frequency. By

manipulation of the 1-0 power spectra in various ways, the same kind of Fourier feature

extraction can be performed. Integration of the power spectra of adjacent projections

4l produces information equivalent to that from the wedge segments. Sampling the 1-0

spectra and integrating over projections generates information from discrete spatial

frequency intervals, corresponding to the annular segments of the wedge-ring detector.

1 Results from a computer simulation by Gindi and Omitro (1984) are shown in Figure 20.

II.A.3.b. Image Moments

Two decades ago, Hu (1962) described a system of linear combinations of image

* moments that are invariant to translation, rotation, and scale change. Later, aitra (1979)

modified the system to include invariance to relative image contrast. Six combinations of

ten image moments mpo are required, where:
p'S

m = . dx dy xP yq f(x,y) . (29)

The ten necessary image moments are m,,, m,o,iW , M611 , Min, m , M1 1 , Min, and m,,.

Gindi and Gmitro (1984) demonstrated that the ten moments can be computed from four

projections spaced w/4 radians apart. The ten image moments and the linear combinations

can be rapidly computed by digital means from optically-generated projections.

4P
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IlI.A.3.c. Hough Transform

Ir

The Hough transform was developed as a technique to speed detection of straight line

segments in digital imagery. Edges of the object are mapped by the Hough transform to a

parameter space, wherein peaks indicate the presence of straight lines in the object.

Deans (1981) described the close similarity between the Hough and Radon transforms. For

binary pictures, in fact, they are identical. Eichmann and Dong (1983) have proposed a

coherent system to generate the Hough transform, while Gindi and Gmitro (1984)

demonstrated that 1-D filtering of Radon projections can be used to edge-enhance a 2-,

image and derive the Hough transform simultaneously. Their digital simulations of the

computation of the Hough transform are shown in Figure 20.

I I.A.4. Image Coding and Bandwidth Compression

The potential of x-ray tomography in medical applications led to investigation of the

collected data required to obtain good image quality (Rowland, 1979). In turn, this has led

to application of the tomographic transformation to reduce image storage and transmission

* requirements while maintaining image quality (Mersereau and Oppenheim, 1974). Since only

1 -D compression operations are required after the projections are collected, rapid coding is

possible. To date, the work has been aimed at digital compression of the 1 -L) projections.

Smith and Barrett (1983) truncated and quantized the Fourier components of each

projection of a scene to reduce the data from 8 bits/pixel to 1.1 bits/pixel while retaining

good image quality. As they point out, the approach works very well with rectilinear

scenes, since significant Fourier components will predominate in a limited number of

projections. Fraser et al. (1985) investigated the effect of gross reduction of the number

of projections used, as well as quantization effects of various spatial frequency ranges.

Using 256x256 8-bit images, they obtained good image quality with as few as 0.86

bits/pixel.

% o.
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I I.A.5. Spectrum Estimation

In temporal signal processing, the estimation of frequencies of a signal buried in

0 uncorrelated noise is a classic problem (Robinson, 1982). Averaging and modeling

cechniques have been developed appropriate for distinguishing various types of signals (Kay

and Marple, 1981). Most are based on Fourier transform and/or correlation operations and

I.

0 are hence adaptable to operation in Radon space for 2-D signals. Traditional methods

incorporating averaging operations, such as the periodogram and the Blackman-Tukey

spectrum estimate, are most useful for detecting the presence of sinusoidal signals. To

compute the periodogram, windowed segments of the 1-D input are sampled and padded

with zeros. The size of the data window determines the frequency resolution of the

periodogram. The power spectra of the segmients are computed and averaged. Since the

noise is uncorrelated, the signal spectrum should dominate in the periodogram. This

approach has become popular since the invention of the FFT algorithm. 2-0) periodograms

are used in a similar manner for spatial signals (Dudgeon and Mersereau, 1984). For 2-D

csignals, optical processing techiques can be used to estimate the spectrum. Indeed, one of

the success stories of optical processing, Labeyrie stellar speckle interferometry, generates

a form of 2-D periodogram where the signal segmentation is over time rather than over

space. Computation of the traditional periodogram is readily adaptable to Radon space

implementation. The projections of a noisy signal are computed and segmented. The

individual segments are padded with zeros and Fourier transformed. The power spectra of

the segments of the projection are averaged to derive an estimate of the power spectrum of

that one projection. The same procedure is carried out for each projection to generate the

'.

2-D power spectrum estimate.

The Blackran-Tukey algorithm derives a spectral estimate via the Wiener- Khintc hine

theorem, i.e. the power spectrum of a stochastic signal is the Fourier transform of its

spc.4mutto fte r-toalroorm.sraiy.dpal o ao pc iI
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autocorrelation. For a sampled 1 -0 signal, the autocorrelation is computed for a number of

allowed lags (shifts) and Fourier transformed. For a 2-0 signal, the calculation of the 2-0

autocorrelation makes this approach computationally expensive. However, once the

projections have been derived, this approach can be performed in 1-D rapidly and cheaply.

By the filter theorem, the projection of the autocorrelation is the autocorrelation of the

projections. The 1 -) autocorrelation of each projection can be rapidly computed, Fourier

transformed, and displayed in sinogram or polar format to give an estimate of the 2-D

power spectrum.

II.A.6. Linear, Space-Variant Operations

In recent years, a considerable amount of effort has been directed at developing

optical methods of implementing space-variant operations, in order to broaden the
SE

applicability of optical processing. For a review of this work, see Goodman (1981). It is

natural, therefore, for us to investigate the application of the Radon transform to such

operations. We will see that Radon-space implementation of general space-variant

operations, though theoretically possible, usually offers little if any advantage over direct

processing. For some special cases, however, the Radon approach can be very useful.

A general linear, space-variant operation on a 2-D function f(r) may be expressed as a

superposition integral:

g(r)= ar d2r' f(r') h(r;r'), (30)

where the kernel h(r;r') can be regarded as a space-variant impulse response. Since the

superposition kernel is a function of both the input and output coordinates, and is therefore

4-D, we cannot derive unique 1-D projections of h(r;r') in the manner described by eq. (2).
Op

We could derive a generalized projection Xh(P,0;P',0') of h(r;r') by integration over the

S.

,, . ,.... .- ,,., ,,-, ,, , .. ,...,.... ,........,. ...-... ....-....... ,...........-.......,.........-.....,.. . . . . ,-,,....-, ..-.-.
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input and output variables and examine the relationship between Xf and )Xh that yields X,.

We have already seen some cases, e.g. the Fourier and Hartley transforms, where the close

kinship of the space-variant integral kernel and the Radon kernel allow the operations to be

directly performed in this manner. But for the general space-variant operation, we will

instead consider an alternative treatment made by Bamler and Hofer-Alfeis (198:). They

proved that 2-D space-variant operations can be considered to be a special case of 4-0

space-invariant convolution, i.e.

g(r) = g'(r;r'=O) = [f'(r;r') h(r;r')] Ir'=O, (31)

where f'(r;r') - f(r) 6(r r'), and the operator **,, denotes 4-D convolution. Deriving

f'(r;r') involves sampling a 4-D smeared version of f(r), and so is somewhat akin to back-

projection. Bamler and Hofer-Alfeis proposed a means of implementing the 4-D

* convolution optically via sequential 2-D convolutions for the case of a bandlimited space-

variant impulse response. By extension of the filter theorem [eq. (13)] to 4-D, the
S.

convolution can theoretically be performed via 1-D convolutions in Radon space once the

projections of the 4-D functions have been derived. The 4-0 generalization of the

projection operation (eq. (2)] is obtained in analogous fashion to the 3-0 case (Section

.8.1.), i.e. the 1-0 projection of a 4-0 function is generated by integration over the 3-0

volume normal to the 4-0 unit vector defining the azimuth of the projection. Three angles

(ii,8,y) are required to specify this unit normal. For clarity, we respecify the arguments
.-

(r;r') of the 4-D functions by the notation (r,), where the subscript denotes the

dimensionality of the space. Similarly, we define the 4-D volume element d~r = dar d~r'.

The 1-0 projection of the 4-0 input function f'(r.) is therefore:

S)f'(P,=,8,y) = jad"r f'(r,) 6 [p - r, nt . (32)

.7,

S>

-o *. .,• .. - ° -. . . . . .. . ... .o ..- ..- -,-,- - - - . •S *•



-41-

Note that the definition of f'(r,) = f(r) 6(r + r') allows some simplification of this

expression by evaluating the integral over d'r'. However, the projection of the kernel h(r,)

cannot be so simplified, in general. Extending the filter theorem [eq. (13)] to 4-0, we

have

g'(r,) = Ri'-[).g,(p,aB,y)] = R,' (fm,(p,,,) * Xh(p,,,8y)] (33)

where R(" is the 4-0 inverse Radon transform. The desired output g(r) of the 2-0 space-

variant operation is obtained by evaluation of g'(r,) = g'(r;r') at the 2-0 plane defined by

r' = 0. Since each 1-D convolution influences every point in the 4-0 convolution (and

hence every point in the 2-0 output plane) via back-projection, there are no computational

shortcuts--only nonessential 4-D output. In Radon terms, mapping the 2-0 input function

to 4-D space and performing a 4-D space-invariant convolution avoids the necessity of
S

operating on one projection of the 2-0 input f(r) with multiple generalized projections of

the 4-0 kernel h(r;r') to obtain one projection of the 2-D output g(r). However,

performing the forward and inverse Radon transforms of 4-0 functions are very intensive

computational processes which would require special-purpose hardware if they are to be

perforrhed rapidly and economically. To illustrate the scope of the problem, consider that

the forward transform requires the calculation of a volume integral for each point in each

projection. For a 500 x 500 input f(r), the general space-variant kernel h(r;r') has 50U' =

6.25 x 1010 data points. Calculation of each of 500" projections requires 5UO volume

integrals over 500' points. The difficulties of performing the 4-0 back-projection are

similarly prodigious. As will be discussed, Barrett (1981) proposed a hybrid 3-0 Radon-

space signal processor that could be adapted to these 4-0 applications, but the addition of

one more dimension significantly complicates the data storage and manipulation

requirements. Hence, performing the general space-variant operation in Radon space via

the 4-0 convolution algorithm has no obvious advantage over direct digital processing at

*
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this time.

I I.A.7. Bilinear and Nonlinear Operations

For 1 -D signals, a number of processing algorithms have been developed that operate

on the signal in a multilinear or nonlinear manner for such purposes as voice pattern

recognition and echo deconvolution. Examples include coordinate- frequency

representations (e.g. sliding-window spectrum, Woodward ambiguity function, Wigner

distribution function (WDF)), triple correlation (Lohmann and Wirnitzer, 1984), and the

cepstrum (Childers et al., 1977). The success of these algorithms for certain 1-0 signal-

processing tasks has stimulated research into 2-D analogs, but these are usually

computationai;y intensive and hence not often implemented digitally. In some cases,

optical processing has been profitably applied, notably for coherent optical computation of

the Wigner distribution function of 2-0 data (Bamler and Glider, 19d3). Those operations

based on Fourier transforms (e.g. WDF) or on nonlinear point processing (e.g. cepstrum)

may be implemented in Radon space. Using a fast optical Radon transformer and 1-U)

4 analog or fast digital processing, the 2-0 operation may be performed profitably. An

example of such an operation is coordinate-frequency representation of 2-0 functions.

A simultaneous representation of the coordinate and frequency distribution of the

energy in a nonstationary signal has proven useful in a number of applications, e.g. radar

signal processing (Woodward, 1953) and speech processing (Oppenheim, 1970). Such a

representation is intended to give a picture of the local' frequency spectrum of the signal,

i.e. the frequency content of the signal arising from a particular region of coordinate

space. Obviously, such a picture requires twice as many dimensions in the representation

space as in the signal space. Several such representations have been proposed. The mostS
direct path to a local spectrum is the complex spectrogram (CS), or sliding-window

spectrum, where a constant window function is shifted over the signal to specify the region

p
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to be Fourier analyzed, i.e. for a 1-0 signal f(t), the complex spectrogram Sfg is defined

as:

Sfg (t;V) = dt' f(t') g (t' - t)e 2 i v t  (34)

This representation is easily computed by coherent optics but the output is affected as

much by the window g(t) as by the input f(t). This potential problem can be alleviated by

using a self-windowed representation, such as the Wigner distribution function (WOF),

which is commonly defined as:
W f v = ' t ' f t' 2 i t

Wf (t;V) = dt' f(t4 7 ) (t - !:) e 2 i v t '

-a=

* = 1 [ f ( t 5 .) f ( t - 5 , ( 3 5 )

where is the 1-D Fourier operator transforming coordinate t' to frequency J. This

representation was introduced by Wigner (1932) and introduced into optics by dastiaans .

(1978). Another closely related function is the Woodward ambiguity function (AF), which is

defined as:

Af ( ;t') = dt f(t * f (t - t) e 2 r i v t

2 2*

t [f (t ) f- (t - (- (36 )

It is related to the WDF through a double Fourier transform. Several optical methods for

computing these representations for 1-0 functions have been introduced (Bartelt et al.,

1980) (Brenner and Lohmann, 1982) (Eichmann and Dong, 1982) (Athale et al., 1982).

1 Generation of such representations for 2-0 functions presents another problem, since

the resultant is a function of four variables. Generally, 2-D slices of the 4-0

'7'• 4
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representation are produced. Real input functions are assumed, eliminating the need for

conjugating the shifted function. In addition, the computation of the bilinear product

function is expensive if done digitally, increasing the motivation for optical processing. Of

the representations listed, the WDF is most readily computed optically, since the Fourier

transform of the product function is over the shifted coordinate variable . Optically, the

product function is generated by passing coherent light twice through a transparency of the

signal, either by reflecting an image of the transparency onto itself, by overlaying copies

(Bamler and Glider, 1983), or by imaging onto a copy (Conner and Li, 1985). The bilinear
V|

product function is then Fourier transformed to generate one slice, Wf (r ,p). Shifting the

position of the input functions generates 2-0 slices for different values of r,.

Computation of the WDF can also be performed in Radon space by taking projections of

*i
the optically derived bilinear product and Fourier transforming in 1-0. Easton et al. (1984)

demonstrated generation of 1-0 central slices of the squared modulus of the 4-D WUF and

later used the 1-0 SAW complex Fourier transformer to produce bipolar 2-D slices of the

4-D WDF of a 2-0 real function. An example is shown in Figure 21.

ll.8. Operations on 3-D Signals

Earlier, we stated that we would emphasize processing of 2-0 signals via a

tomographic transform. However, it may be even more profitable to use the Radon

transform to reduce 3-0 problems to 1-0 operations, since digital data manipulation is even

more time-consuming in that case. Two kinds of 3-0 problems will be discussed: 3-D

purely spatial data, and 2-0 spatial data with a third dimension (e.g. time or spectrum).

We shall briefly describe the required operations, and suggest potential applications.

II.B.1. 3-D Spatial and 2-D Spatial * 1-0 Temporal Signals

In Section I.S.1. we described the decomposition of a 3-0 function into a set of 1 -D

projections by integration over parallel planes. The projection operation is identical to eq.

'.N
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(2), except that the delta function reduces the volume integral to a set of planar integrals.

Given a 3-D function f(x,y,z), we wish to integrate the function over a set of planes

normal to the 3-D unit vector R. Two angles are required to define the normal to a plane,

commonly the azimuth * and the colatitude 8. The displacement of the parallel plane from

the origin is again defined as p, so that n^ = p/p. The 3-D projection operation can then be

expressed:

X(p,*,8) = d3r f(r) 6(p - r- ) . (37)Si
The 3-0 version of the central-slice theorem states that the 1-0 Fourier transform of a

projection of a 3-D function yields one line through the origin of the 3-0 Fourier

transform.

The 3-D back-projection operation is again very similar to the 2-0 case, but now the

1 -D function is smeared over the original projection plane normal to R. Repeating this for

all directions S generates a 3-D summation image b(r). In the filtering step, however,

there is a significant qualitative difference between the 2-D and the 3-0 cases. Recall

that in 2-D, the Fourier space filter for the 1-0 projection is H(v) = lvi, and the

1coordinate space counterpart is h(p) = "2r- , which falls off slowly with p. The

corresponding filter for the inverse 3-D Radon transform is H(a) = 21ral, where a is the

magnitude of the 3-0 spatial frequency vector ( ,, (Barrett, 1981). The coordinate

space filter is easily found, since multiplication by -(2wra 1 ) in the frequency domain

corresponds to taking the Laplacian in the space domain (Gaskill, 1978). The expression for

the inverse 3-0 Radon transform is therefore:

410 f(r) =-- 71[b(r)] (38)

where b(r) is the 3-D summation image. Filtering for the 3-0 inverse transform is

_0' S
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therefore a local operation, in contrast with the 2-D case.

Barrett (1981) proposed a hybrid 3-D Radon-space signal processor composed of an

optical system to derive the projections, digital storage, 1-D signal processing, and optical

back-projection. The input function was assumned to be a collection of 2-0 image frames,

i.e. a movie film, where each frame is assumed to be a 'slice' through the 3-0 object. All

* of the 3-0 versions of the operations described in section I l.A. could be performed by this

system, including 3-0 Fourier transformation and convolution. Such a system should be

capable of performing 3-0 complex Fourier transforms on 5003 data points in less than 4

hours. A digital system common at the time (POP 11/34 + array processor) would have

required two days.r

Such a sysL..r can also be applied to 2-0 spatial + 1-U) temporal signals (e.g. movies)

for joint spat ial/tempor al filtering. A possible application would be to stellar speckle

interferometry, allowing the averaging filter impulse response to vary temporally. Such

operations are feasible by digital means, but are expensive and time-consuming.

0 11.8.2. 2-0 Spatial + 1-0 Spectral Data

Optical detection and display systems are best-suited to 2-0) data formats. In white-

light images, a third dimension of information has been encoded in the spectrum of each

image point. The Radon transform provides a mechanism by which we may use 2-0

detectors, signal processors, and display devices to manipulate the spectral data while

retaining the ability to regenerate the image. For example, if we have a white light 2-D

V image, we can derive the set of 1-0 projections of that image as described in sect ion

I.C.1. The 1-0 projections can be spectrally dispersed in the orthogonal dimension,

allowing 2-0 filtering to be performed on the joint spatial/spectral projection. The 2-0

filtered signal can be 'inversely dispersed% to rederive spectral ly- fil tered 1 -D projections,

and a 2-0 filtered image then reconstructed via the inverse Radon transform. Such a
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system could be used for spectral matched filtered imaging (Lohmann and Maul, 1981) (Yu,

1984) or imaging spectroscopy.

IlI. Summary and Conclusions I.

We have discussed the reduction of 2-0 signal processing operations to 1-0 operations

via the Radon transform for the purpose of gaining flexibility, precision, and mechanical

advantages over direct optical signal processing. This technique is most readily applicable

to operations based on Fourier transforms and convolution. Several optical systems were

discussed that are capable of performing the forward and inverse dimensional

transformations, and a nunber of applications were considered, some already demonstrated

and some postulated. The authors believe that many of the fruits of this technique have

yet to be harvested, and we encourage workers in signal processing to investigate the
U

utility of projection operations in their own applications.
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Two-dimensional complex Fourier transform via the
Radon transform

Roger L Easton, Jr., A. J. Ticknor, and H. H. Barredt

A hybrid system has been constructed to perform the complex Fourier transform of real 2-D data. The
system is based on the Radon transform; i.e., operations are performed on I-D projections of the data. The
projections are derived optically from transmissive or reflective objects, and the complex Fourier transform is
performed with SAW filters via the chirp transform algorithm. The real and imaginary parts of the 2-D

* transform are produced in two bipolar output channels.

1. k*OdaLIonM through the 2-D transform. When the transforms are
The utility of the 2-D Fourier transform as a tool for plotted in polar format on CRT screens, the real and

*signal processing is well known. Its computation *s imagination parts of the 2-D Fourier transform of the
usually performed digitally or by coherent optics. object are displayed. The system can be used with

*Other techniques have been demonstrated to compute either transmissive or reflective input data, and the
the 2-D transform using incoherent illumination.'-9  illumination may be incoherent. We have previously
Each of these methods has inherent advantages and reported on the application of this system to computa-
disadvantages. Digital computation on a general pur- ino oe pcr, 0 btrslso - ope
pose computer is precise but slow, even with the FFT transformation are given here for the first time.

*algorithm. In addition, it can suffer from aliasing H.Oca tw Triwain
problems if the data are inadequately sampled. The 0 ~OtclF~~rTasomto
use of special purpose hardware, such as array proces- Fourier transformation by coherent optics has been
sors, can speed the process considerably, but digital the basis of optical processing for many years and
techniques cannot as yet approach video rates (30 found use even before invention of the laser. Coherent
frames/sec) with large arrays. Optical methods to optical systems can compute the squared modulus of

*compute the Fourier transform have been developed, the Fourier transform virtually instantaneously but
but each has disadvantages limiting its utility. We are limited in performance by speckle noise and by the
have constructed a system capable of performing corn- available input transducers (spatial light modulators).
plex Fourier transforms of 2-D input data at video Using the proper optical configuration, it is easy to
rates. The system is based on Cie Radon transform show that the correct amplitude and phase of the
and the chirp Fourier transform. An optical scanner transform are produced at the output plane (limited by
produces l-D projections of the input data, which are aberrations in the transform lens), but the necessity of

C7 Fourier transformed in 1-D by a surface acoustic wave square-law detection makes separation of the ampli-
chirp transformer. The real and imaginary parts of tude and phase components of the transform (or, near-
the transform are produced simultaneously in separate ly equivalently, of the real and imaginary parts) diffi-
channels. A single projection is derived in 10 ,usec, and cult.
the complex transform is produced <30 Asec after A considerable body of work has been done on pro-
commencement of the scan. By the central slice theo- duction of the Fourier transform by incoherent optics

IE-rem, these 1-D transforms are equivalent to lines with the aim of gaining significant advantages over
coherent optics in output noise and flexibility of inputs
while retaining the speed ad~vantage over digital corn-
putation. Katyll used a temporally incoherent source
in the coherent optics format with appropriate disper-

The authors are with University of Arizona, Optical Sciences sion correction. The requirement for spatial coher-
Center, Tucson, Arizona 83721. ence remains, and derivation of the complex transform

* Received 12 July 1985. is difficult. Other systems use geometric shad ow-
0003-6935/85/223817-08S02.00/0. casting to image the input on a reference mask of
0 1985 Optical Society of America. known spatial frequency and phase. The integrated
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light at one position in the output plane is proportional Glaser et al.9 have implemented the chirp transform
to the Fourier coefficient at one spatial frequency. algorithm optically to produce the complex transform.
The technique of Mertz, 2 later refined by Richardson,3  A holographic filter is used to perform the convolution
produced the reference masks via the moire pattern with the quadratic phase factor, thus requiring a tern-
created by two Fresnel zone plates. By sequential porally quasi-coherent source. Spatial coherence is
replacement of the second zone plate with one with not required. The optical output is a spatial carrierspatial frequencies in quadrature, Richardson was able modulated by the complex transform, from which the

to compute the cosine and sine transforms separately real and imaginary parts may, in principle, be derived
giving the real and imaginary parts of the Fourier by digital demodulation at the cost of temporal pro-
transform. This implementation can be analyzed as cessing capacity.
the chirp algorithm for Fourier transformation, which
decomposes the correlation with the Fourier kernel II. Radon-Fourler Trantormew

* into multiplication and convolution with quadratic All the 2-D Fourier transforming systems discussed
phase factors as described later in this paper. Leifer et above are restricted in utility by limitations on speed,
al.4 used a stored reference mask with a limited range format of input and/or output, space-bandwidth prod-
of spatial frequency and orientation in a shadow-cast- uct, or dynamic range. Many of these systems have
ing correlator for alphabetic character recognition. In proven useful in some applications, but none truly fills
all these systems, the shift required for correlation of the need for rapid calculation of the complex 2-D Fou-
the input with the reference spatial frequency mask is rier transform with large space-bandwidth product.
accomplished by optical parallax, and no physical Using a different principle, we have constructed a sys-
movement is required. The maximum spatial fre- tern which can potentially compute complex Fourier
quency response of these systems is limited by vignett- transforms of large arrays at video rates. The complex
ing of the reference masks and by diffraction (since transform is generated as cosine and sine transforms,
geometric optics is assumed). The vignetting problem i.e., the real and imaginary parts of the transform.
may be solved by using a moving correlator at the The two outputs are obtained simultaneously. Opera-

• expense of slower calculation and increased complex- tion is based on the Radon transform, 1 which decom-
ity. Even here, the scanning need not be physical poses a function of M-dimensions into the complete set
motion if an imaging detector is used.8 However, the of 1-D projections by integration over M - 1 dimen-
geometric optics assumption severely limits the spatial sions. For the 2-D case, projections are obtained by
frequency response of these incoherent correlation integration over sets of parallel lines. The primary
systems to arrays of 100 X 100 pixels or so. In addi- theorem of the Radon transform states that a function
tion, the spurious terms present in the output plane can be reconstructed from the complete set of its pro-
decrease contrast and reduce output dynamic range. jections and serves as the operating principle of medi-

Other authors have investigated different avenues cal computed tomography. The Radon transform has
to Fourier transform computation. Recent work by also been shown to be useful in general signal process-
Tai and Aleksoff6 has demonstrated production of ing, including pattern recognition, 12 3 image filter-
complex transforms of incoherently illuminated data ing,14.15 bandwidth compression, 16

,17 computation of
by selection of the proper output term from a grating the Wigner distribution function,18 and Fourier spec-

* interferometer. This approach is limited to 1-D data, trum analysis. 0 19
,
2 0

however. Xu et aL. 7 have produced the complex trans- The utility of the Radon transform for signal pro-
form of incoherently illuminated 2-D data occupying cessing is due to the central-slice, or projection-slice,
one-half of the input plane. A symmetric object is theorem, which states that the 1-D Fourier transform
synthesized by reflection through the origin and pro- of a I-D Radon projection yields one line through the
cessed through two illumination channels polarized 2-D Fourier transform of the 2-D function. The l-D

, orthogonally. The system performs well, but the re- transform passes through the origin of 2-D Fourier
striction on input format limits its utility. George and space, and its orientation is determined by the orienta-
Wang also have performed Fourier cosine transforma- tion of the lines-of integration. Since systems exist
tion of transmissive or reflective objects in incoherent that can rapidly compute 1-D Fourier transforms (e.g.,
light by synthesis of a symmetric object followed by an CCD, SAW, or AO), adopting the Radon transform
achromatic optical Fourier transform. A double im- approach makes possible rapid computation of the 2-D
age of the input is produced interferometrically, and Fourier transform.

C the output of the optical system is the cosine transform The system for producing the Radon transform of
on a bias. Adjustment of the interferometer allows the 2-D data has been discussed previously.10 1 8 .o
separate generation of the sine transform. Theoutpuit Suffice it to say that the projections of the 2-D distri-
signal is detected with a photodiode array for later butior of inLensity transmission (of a transparency) or
digital manipulation. The bias could be subtracted reflctaince (for reflective objects) are derived by pro-
electronically or interferometrically. They report sys- jec',ing a line of light on the input plane and integrating

* tem response to 20 cycles/mm, and their results agree the light transmitted or reflected with a detector. The
very well with calculations. This system has the po- output of the detector is proportional t,) tne line inte-
tential disadvantage of nonsimultaneous generation of gral of transmission or reflectance. Sweeping the line
the cosine and sine transforms. of light perpendicular to itself across the input data

3818 APPLIED OVTICS / Vol. 24, No. 22 / 15 November 1985
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produces a temporal signal proportional to one line- temporal frequency related to the output temporal
integral projection. Rotation of the azimuth of sweep coordinate via v- 0

2t. If only the modulus of the
with a prism allows production of the complete Radon transform is required, the third step can be deleted.
transform as a sequence of 1-D temporal signals out of This analysis assumes that the chirps are complex and
the detector. For obvious reasons, this optical system of infinite length.
is termed a flying-line scanner. One way to obtain the chirp impulse responses nec-

From the central-slice theorem mentioned above, essary to implement the transform is via surface acous-
the 1-D transform of a projection is one line through a tic wave (SAW) chirp filters.22-24 A SAW filter con-
polar plot of the 2-D transform. Farhat et al.21 have sists of a piezoelectric crystalline substrate on which
adapted both coherent optical transformation and two aluminum interdigital transducers (IDTs) have
shadow-casting correlation to perform the 1-D Fourier been deposited. When a signal is applied to the input
transformation of Radon-transformed data. Their in- IDT, the electric field across transducer fingers of op-
coherent transformer produces full complex trans- posite polarity generates a deformation of the crystal
forms of complex input data by using two-color chan- surface via the piezoelectric effect. The deformation
nels. We have taken a different tack, disposing of travels along the crystal surface as a sound wave. At
optical Fourier transformation altogether, and instead the output IDT, an electronic signal is regenerated
implementing the chirp Fourier transform algorithm from the sound wave by the inverse piezoelectric inter-
with surface acoustic wave filters. The chirp trans- action. By proper design of the separstions and over-
form results from a decomposition of the Fourier ker- laps of the fingers in the IDTs, any of a wide variety of
nel- impulse responses can be generated. For a chirp filter,

exp(-2rivt) exp[-ir. 2,)X 1xpfii(t)2 J the separations of the fingers are varied to obtain an
impulse response h(t) whose frequency increases or
decreases from some initial carrier frequency wo at rate

X ep ir (-t)• (1) a, i.e., of the form

Thus the Fourier transform may be written h(t) - com[(wot )]•

F(,) - f(t) exI-2rit)dt - ep -ir O Again, the instantaneous frequency of the chirp at

time t, is
+XI(M) expH-- 9I~r )] X exp iTr -O -/] dt 1 tW o ±at

f. IF,- Xd(wt k tl I -__ a,

x zpi T(t) 2 1 i [ i ( .-9) ] d Tr W t ~ ( - 2 ) '(- ) 2.2

" [xP[-ii(Ot)1 As before, the positive term is called an unchirp. Real-
istically, the filter must have a finite temporal re-

)exp{-is(t)• ezplir(~t)2])I(.. , ( sponse, so the cosine function must be windowed by a
function with compact support, e.g., a Rect function or

where denotes convolution. The complex exponen- a Hamming window. For chirp Fourier transforma-
tials are linear FM signals, i.e., the frequency vanes tion, the premultiplication and postmultiplication
linearly with time, and have been named chirps by the chirps can be generated by applying an impulse input
radar community. They are also called quadratic to SAW chirp filters of the proper sign (i.e., upchirp or
phase factors for obvious reasons. The instantaneous downchirp). The convolution is performed by apply-
frequency of the positive complex quadratic phase ing the signal to a similar filter. It is important to note
term exp[+ir(t)2 ] at time tn is that the SAW chirp filter impulse response is a real

1 Xdo + d11 function of the form A(t) cos(wt ± at 2 ), not the com-
x -dt " + -2 plex exponential seen above. The function A(t) is an

apodization of the chirp, necessitated by the finite
which increases with t,. Henc3,, it is called an upchirp, output signal length, and w is the initial angular fre-
while the negative exponential is a downshirp. Using quency of the chirp. The chirp transforn algorithm
the three chirps, Fourier transformation can be broken may still be implemented,23 but the steps now become
down into the following steps: (I) premultiplication by a downchirp

(1) multiplication of the signal by exp(-jT%2t2), a
downchirp; Rect _ - 1 Co s t - .

(2) convolution of the product with an upchirp, 2 2
exp(+ihr02t2);

(3) multiplication of the filtered signal by a down- (2) filter this signal with :mpulse responsechirp, exp(-i~rtJ~t2).The parameter 702 in the chirp signal is called the ht) - - ] x Cos()

* chirp rate and is the same for all three chirps. The
temporal output signal is a scaled version of the Fouri- (3) postmultiply the filtered signal by two up-
er transform of the temporal input signal with the chirps separately:
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(a) Rect(! 0..X coo(W+t + __ )

(b) Rc _ -0XcoWt+ e

7+ -2) 2 MAN+

(4) low-pass filter both outputs of step (3). The "

terms r+ and 7- represent the temporal width of the
upchirp and downchirp, respectively, and are also
called the time dispersions of the chirps. Simil.rly,W+ Fig. 1. Schematic of the i-D SAW complex Fourier transformer.
and w- are the initial angular frequency of the upchirp The temporal signal f(t) from the photomultiplier in the flying-line
and downchirp. scanner is proportional to one projection. The impulse response of

The output temporal frequency is related to the the SAW filters is h*(t). The microcomputer controller sends a
temporal position in the output signal by the relation trigger signal to the digital delay generator, which in turn produces a

1-nsec pulse that is applied to the downchirp SAW filter. The
r(w - w_ + at)/2i. (3) resulting impulse-response signal h..(t) is multiplied by the incom-

are in ing projection signal in a rf mixer. The product signal is applied to
Sine the carrier frequencies in SAW fltrsthe upchirp SAW filter, and the output goes to the signal-input port

the rf regime (w = 15-300 MHz), multiplications can of the rf phase comparator. After a delay of 14 gMec (1-nsec resolu-
be performed in rf mixers. The discrepancy in the sign tion), the digital delay generator outputs a second 1-nsec pulse,
of the two postmultiplication SAW chirps relative to which is applied to the poetmultiplication SAW filter. An rf phase
that in the complex chirp algorithm given above results shifter at the SAW filter output allows fine adjustment of the post-
from rf double-sideband mixer multiplication. Such multiplication timing. This signal is applied to the reference port of
mixers yield product terms as modulations on carriers the phase comparator. After low pass filtering, the in-phase I
at the sum and difference frequencies of the original output of the phase comparator is proportional to the real part of the
carriers. That is, given two signals A(t) and B(t) mod- Fourier transform F(Y) (Le., cosine transform) of the input signal
ulating carriers at angular frequencies w0 and wb, re- f(t). Similarly, the output of the quadrature port Q of the phasespectively, the action of the f mixer is to produce an comparator is proportional to the imginary part of F(p), (i.e., sine

transform).
output

A(t) coe(°w ) X B(t) cos(wb t) - [A(t)B(t)] one-fourth of the time-bandwidth product of the con-2 volution filter.23 SAW chirp filters with other window

X IcoS[(W. + w )t] + 00[(. - Wb)t]O. (4) functions (e.g., Hamming) are available if smaller side-
lobes are desired in the output signal. If only the

The low-pass filter selects the difference frequency squared-modulus of the Fourier transform is required,
term, and so the sign of the postmultiplication chirp square-law envelope detection can be substituted for
must be the same as that of the convolution filter to steps (3) and (4). This is the algorithm we have used
obtain demodulation. The signal postmultiplied by previously to perform 2-D spectrum analysis in Radon
the cosine upchirp is the real part of the transform, space.' 0

while that multiplied by the sine upchirp is the imagi- The complex transform algorithm was implemented
nary part of the transform. as shown in Fig. 1 using SAW chirp filters from Ander-

For maximum time-bandwidth product in the out- sen Laboratories (models DS-120-10-20-251A and
put signal, the requirements on the chirps are that the -252A), which have bandwidths of 10 MHz, maximum
time dispersions of the premultiplication and the con- time dispersions of 20 psec, and a resulting time-band-
volution chirp be related by r- - -+/2, and that the width product of 200. The chirp rate a - 27r X 10
bandwidth of the convolution chirp be twice that of the MHz/20 Asec - r X 1012 Hz 2. The filter windows were
multiplication chirps.23 The two outputs are propor- unweighted. A flying-line scan, producing one Radon
tional, respectively, to the real and imaginary parts of projection, is made in 10 ,sec and is synchronized with
the Fourier transform within a time window (-r+/2 _< t the signal driving the premultiplication impulse gener-
:_ r+). The corresponding spectral window spans ator so that the center of the scan is mixed with the
temporal frequencies center of the premultiplication downchirp. This

time-gates the premultiplication signal for a maximum
cit\ system time-bandwidth product. After filtering in

I - - •the upchirp SAW, the signal is coherently demodulat-ed by the postmultiplication upchirp. To obtain 40
The rectangular finite-length window of the convolu- dB of rejection of the signal from one channel of the
tion filter has the effect of convolving the spectral transform from the other channel, the time of the
components with a sinc function, which limits the premultiplication chirp impulse must be synchronized
number of resolvable frequencies in the spectrum to to the postmultiplication impulse to an accuracy of
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* better than 100 psec. 23 The timing interval between the postmultiplication chirp. After low-pass filtering
impulse inputs to the premultiplication and postmul- in each channel, the in-phase signal is the bipolar
tiplication chirps is the value t' in step (3). A digital cosine transform, and the quadrature signal is the bi-
delay generator is used to provide the impulse to the polar sine transform (each within the frequency win-
postmultiplication chirp filter with temporal resolu- dow and convolved with the sinc function due to the
tion of 1 nsec. More precise timing is provided by finite convolution window as described above).
shifting the phase of the postmultiplication chirp with Using the SAW filters described, the chirp trans-
a continuously adjustable rf hybrid phase shifter. The former resolves fifty temporal frequencies in the win-
demodulation is accomplished in an rf phase compara- dow ( v1 :5 2.5 MHz). When the output of the flying-
tor, a four-port device which produces in-phase and line scanner is applied to the SAW chirp Fourier
quadrature mixed signals from an input signal and transformer, the spatial frequency scaling depends on
reference. It may be thought of as a combination of a the scanning speed. Typically, we scan a 25-mm aper-
signal splitter, a quadrature hybrid, and two double- ture in 10 psec, giving a spatial frequency range of ± 1
sideband mixers. The filtered signal is split and cycle/mm with fifty resolvable points. By scanning a
mixed with in-phase and quadrature components of 10-mm aperture in the same time, the spatial frequen-

cy response is 12.5 cycles/mm. This by no means is
the limit of a SAW chirp filter or optical scanner tech-
nology. Using reflective-array SAW chirp filters

- _(RACs), transformers capable of resolving 3600 points
within a 60-,ssec output window have been reported.2
Were we to use this chirp transformer and scan a 30-

_._. u-.- mm diam aperture in 30 gsec, we would obtain 900
resolvable points in a spatial frequency range of ±15

- Icycles/mm.
The performance of the complex Fourier transform-

er for a 1-D signal is demonstrated in Fig. 2, where the
-- _ output is compared to a computer simulation. A grat-

ing (75% clear, 25% opaque) was placed in a circular
aperture of 20-mm diameter in the flying-line scanner.
The azimuth of scan was oriented so that the line of
integration was parallel to the grating lines. The grat-
ing was mounted on a translation stage so that it could
be shifted within the circular aperture. Four cases are
shown for both the actual and computed outputs. In
each example, the top trace is the output of the flying-
line scanner, i.e., the Radon transform of the object for
one azimuth. The second and third traces are the
cosine and sine transform outputs of the complex Fou-
rier transformer, i.e., one line through the 2-D real part

*and imaginary part, respectively, of the Fourier trans-
form of the original object, via the central-slice theo-
rem. The scanning time is 10 Asec, and the two trans-

_____-__ forms have been output within 30 Asec after the
- -" beginning of the flying-line scan. In the first case, the

grating is centered in the aperture resulting in a sym-
metric input to the Fourier transformer. The Fourier
transform of a symmetric object is purely real, and
hence the sine transform vanishes, as shown. Also
note that the cosine transform is bipolar and symmet-

Fig. 2. Performance of the SAW chirp complex Fourier transform- ric. In the succeeding three cases, the grating is trans-
er. In each of the four cases shown, the top trace is the signal from lated in the aperture, resulting in an asymmetric input
the flying-linescanner. i.e..asingleprojectionofthe2-Dinput. The to the complex transformer and a nonvanishing bipo-
second and third traces are the cosine transform and sine transform. lar and antisymmetric sine transform. The actual
respectively, produced by the SAW chirp transformer. The traces transformer output agrees very well with the computer
on the right-hand side are a computer simulation of the same signal. simulations.
The object was a grating of 25% duty cycle in a circular aperture. In To produce the complex 2-D Fourier transform, the
the first case, the grating was centered in the aperture creating a central slice theorem says that it is merely necessary to
symmetric signal whose Fourier transform is purely real. In the d l t
other three cases, the grating was translated relative to the circular display the I-D transforms of the projections in the
aperture giving an asymmetric signal with a complex transform, proper polar format. However, for discrete uniform
Each horizontal division in the oscilloscope traces represents 5 asec. sampling along both the azimuthal and radial axes, the
indicating that the complete transform is computed within 30 usec. Fourier space will be densely sampled near the origin
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Fig. 3. Two-dimensional complex Fourier transforms of a circular Fi.4Tw-meioacmpeFoietrnfrsoagatg
aperture. The object was a single circular aperture of 1.0-mm F a
diametir, as shown at top. The letters denote the origin of a circular aperture. The spatial frequency of the grating was 1.5

cycles/mm, with a duty cycle of 80% and the aperture diameter was 6sates (Le., the optical axis) for each case. The display was biasedup, mm. (A) Cosine transform with the object centered on the optical
sotaxis a shown. The transform is even, and the Airy patterns of the
part of (A). The brightest areas represent the most positive ampli- ci apertren a The sordeis ofeth ang ae Ary sen. (Bh

tude of the transform, and the darkest areas represent the most circular aperture at the *1 orders of the grating us clearly men. (B)
negative amplitude. (A) With the aperture entered att i, Cosine transform after translating the object by one-half ofa grating

the transform is purely real (B), (C) The aperture was translated cycle. The linear phase term resulting from the translation has
from the optic axis by -1.4 and 2.4 diameters, rpctively, produc- inverted the phase of the Airy patterns. (C), (D) Sine transform off e icg axies d 24 deo nte, rsetvely, pthe object after translation by *one-fourth of a grating cycle, respec-

tively, relative to (A). The transforms are odd, and the Airy pat-

terns at the *1 orders are out of phase. (E), (F) The aperture
diameter was reduced to 2.5 mm, and the center was translated
relative the optic axis by a sufficient distance (2 mm) so that several

and sparsely sampled at the high spatial frequencies. cycles of the linear phase are visible within the central disk of the
Airy pattern. (E) is the real part of the transform and is even. (F) isThe function so obtained is equivalent to [F(p)]4p, the imaginary part and is odd. Note that the translation was in

where p is the 2-D frequency vector and F(p) is the 2-D different directions in the two cases, so that the fringe direction
Fourier transform of the 2-D input function f(r) n differs.
f(xy). The radial spatial frequency vector p is always
non-negative, but we can also consider a radial fre-
quency vector u, which is bipolar. To counter the 1/4 A modules can handle and not high enough for rf mixers.
weighting, it is necessary to multiply the Fourier trans- In their stead, we employed the Motorola balanced
former output by IuI before display. This V-shaped modulator-demodulator integrated circuit (MC1496)
function is produced electronically by passing a ramp to multiply the transformer output byl ul. The bipolar
function through an absolute-value amplifier. Since signal can then be applied to the z axis of a CRT in one
the SNR of the Fourier transformer generally de- of two ways: the signal can be thresholded at ground
creases with increasing frequency, the V function is to display the complex transformation in four parts
rolled off by current-limiting the output of the V gen- (positive and negative real and positive and negative
erator. For a signal on an rf carrier, (i.e., the generated imaginary), or the bipolar signal can be biased up to
magnitude of the Fourier transform that is output by display the complete real or imaginary transform at
the convolution chirp filter), the multiplication by jvt one time. Since the 1-D cosine and sine transform C
is easily done in a rf mixer.' 0  Multiplication of the signals are available simultaneously, they can be dis-
coherently demodulated signal is somewhat more dif- played simultaneously on separate CRTs.
ficult in the frequency range of interest (up to 2.5 To display the transform in the polar format, we
MHz), which is higher than most analog multiplier have used the same system reported previously.10 The
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CE1 . Fig. 6. Two-dimensional complex transforms of a reflective object.

A beam splitter was introduced into the flying-line scanner to direct
the reflected line onto the detector. Fourier transformation and
display were performed as before. The object was a grating in a
circular aperture of 6-rm diameter, as in Fig. 4. The main features

Fig. 5. Two-dimensional complex Fourier transforms of two circu- of the transform are easily sen, i.e., the location and phase of the
ar apertures. The diameter of the aperture* was I mm with their Airy patterns on the rust orders of the grating spectrum. The

centers separated by 5 mm. as shown at top. Again the letters signal-to-noise n les than in the tranamissive case due to the lower
denote the position of the optical axis in each came. (A) Cosine reflectance and lower modulation in reflectance. The real and
transform with the optic axis centered on the object's axis of symme- imaginary parts of the Fourier transform of the object centered on
try. Note the phase change ass fringe paees from the central lobe the optical axis are shown in (A). Since the object is symmetric in
of the Airy disk to the first ring. The faint fringes in the imginary this case, the imaginary part of the transform vanishes. (B) The
part of the transform are due to wobble in the image rotating prism. object was translated by one-half of a grating cycle.
(B) The optic axis was located 1 mm above the symmetry axis
producing fringes perpendicular to those from the double aperture.
The cosine transform is even, and the sine transform is odd. (C) The
optic axis was located on the symmetry axis but displaced from the transform would have to be rotated at 30 Hz, corre-
center of symmetry by 1 mm multiplying the fringes by a linear sponding to an easily obtainable prism rotation rate of

phase term of lower frequency. 7.5 Hz - 450 rpm. Indeed much higher rates have
been reported with excellent image quality.26

Complex transforms obtained with this system at a
rate of 2.5 frames/sec are presented in Figs. 3-6. In

scan azimuth is rotated by an image-rotation prism via each case, the positive part of the Fourier transform is
a stepper motor resolving 200 steps. The maximum presented; i.e., areas of the transform with amplitude
angular resolution in the transform is r/100 rad. A greater than zero are bright, while those areas with
bipolar ramp function is generated and weighted in amplitude less than zero are dark. Note the difference
two channels by the sine and cosine value of the azi- in the usual presentation of the squared magnitude of
muth angle of the scan. The resulting outputs are the Fourier transform, where areas with amplitude
applied to the x and y deflections of the CRT scanning both greater than or less than zero are bright, and the
spot, which produces a line scan across the screen at zero-crossings are dark. In Fig. 3, the object was a
the appropriate angle. After completion of the scan, circular aperture 1.5 mm in diameter. In the first case,
values of the sine and cosine of the new angle are read the aperture was centered in the flying-line scanner
out of a lookup table for the next scan. The scanning resulting in a symmetric object. The Fourier trans-
spot is timed to reach the center of the screen when the form is purely real, and the cosine transform is thezero-frequency output of the Fourier transformer is well-known Airy pattern. If the aperture is translated
applied to the z axis of the CRT. The complete 2-D in the scanner so that the object is no longer symmet-
transform can now be generated in -0. 1-sec, limited by ric, a linear phase term in the transform appears as
the rotation rate of the stepper motor. To allow trans- fringes in the output: the greater the shift, the larger
formation at video rates, the azimuth of the Radon the frequency of the linear phase. In Fig. 4, the object
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USING SAW FILTERS TO PROCESS TWO-DIMENSIONAL DATA BY MEANS OF THE RADON TRANSFORM

Roger L. Easton, Jr., Harrison H. Barrett, and Anthony J. Ticknor

Optical Sciences Center
University of Arizona
Tucson, Arizona 85721

Abstract means of the Radon transform, e.g., spectral ana-
lysis, convolution. and Fourier filtering. Such

S It is well known that many mathematical opera- operations can be performed digitally, of course,
tions on data sets of dimension two or higher may but the process may be time-consuming and the pro-
be performed by reducing the data to one-dimen- cessor expensive. By operating on the one-dimen-
sional projections by means of the Radon transform. sional projection instead, it is possible that the
This is the governing principle of medical computed processor may be significantly faster and/or cheaper
tomography. In this paper, ve describe a system than its digital counterpart. Consider Fourier
that performs the Radon transform of two-dimen- filtering of a two-dimensional image, for example.
sional images and uses SAW devices to perform the Three steps are required: Fourier transformation,
data processing. Two processing operations are dem- filter multiplication, and inverse transformation.
onstrated: Fourier transformation of the data by This operation may be performed digitally, by coher-
means of the chirp transform, aud convolution of the ant optics, or with one-dimensional SAW filters by
data with a stored filter function by means of a means of the Radon transform. The invention of the
SAW correlator. After processing, a custom SAW fast Fourier transform (FFT) Algorithm and the array
filter and an optical system are used to recon- processor have dramatically speeded up digital Four-
struct the processed image in two dimensions. The ier transform calculations, but the process is still
resolution of the processor is currently limited by slow. A typical stand-alone minicomputer, the DEC
the SAW devices (50 points for the chirp trans- 11/34, requires approximately 10 minutes to Fourier
former, 300 for the convolver), but better devices transform a 512 x 512 8-bit array. Adding an array
are available. This system is capable of performing processor speeds this by an order of magnitude at
two-dimensional Fourier transforms at video rates significantly increased cost. The Cray-L, one of the
(30 frames/s), which is much faster then current fastest digital computers ever, still requires about
digital systems. An extension of the system to pro- I second to perform a two-dimensional Fourier

cess three-dimensional data is described, transform and Is very expensive. Coherent optics
can perform Fourier transforms easily, cheaply, and

Introduct'o- at the speed of light, but the output is noisy, and
there are still no fully satisfactory spatial light

The Radon transform has received much atten- modulators to allow analysis of rapidly time-vary-
tion in the scientific community since the invention ing inputs. We propose to perform two-dimensional
of x-ray computed tomography (CT) in the 1960's. It Fourier transforms by operating on one-dimensional
has found application in such diverse disciplines as projections with SAW chirp filters. The resulting
astronomy, nuclear magnetic resonance, and geophy- processor should be inexpensive relative to the dig-

sics. The mathematics of the transform were der- ital system, but more importantly, it should be
ived and published by Johann Radon in 1917 (1), fast: we envision operation at video rates.
where he proved that a mathematical function can be
reconstructed from the complete set of its line-in- Theory

tegral projections. In the case of CT, measured x-
ray transmissions are simply related to the line in- Mathematical analysis of the Radon transform

tegral of the x-ray absorption coefficient. By is straightforward and has been treated in several
taking an adequately sampled set of one-dimensional references (2,3)., We shall touch briefly on the main
data, a two-dimensional map of the x-ray absorption points relevant to the application at hand, Le.,
coefficient can be reconstructed, usually by digital two-dimensional Fourier analysis and filtering.
.eans.

A one-dimensional projection k(o,p) of a two-
We propose to use the Radon transform from a dimensional function f(r) taken along azimuth direc-

different perspective. :nstead of having one-dimen- tion (relative to the x axis) is defined as
sional projections inherent In the data collection,
we use the Radon transform to make two-dimensional
lata susceptible to processing by fast one-dimen-
sional devices. Several types of one-dimensional X (sP) - dr f(r)d(p - r';). ki)
processors exist; the SAW filter is but one. lany 1-,

two-dimensional operations can be performed by

%.Sy
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The one-dimensional delta function reduces the area [

integral to a line integral along a line at an angle f(r) " do [INIA(0,)1 exp(2iyr' ) (3)
0 to the x axis and at a distance p from the origin JO J.-
(Figure 1). The set [X(#,p)I for all azimuth angles *
is the Radon transform of f(r). Again in words, the original function f(r) may be

reconstructed from the projections l(40,p)] by: (1)
By taking the one-dimensional Fourier transform taking the one-dimensional Fourier transform of

of a line-integral projection, an important result is X($,p); (2) multiplying by the one-dimensional filter

obtained: jvJ (v-filtering); (3) taking the inverse one-dimen-
siomal Fourier transform; (4) smearing the function

F1[)(*,p)] s A(*,v) back over the original projection direction (this

creates a two-dimensional function from the one-

dimensional function and is called back projection);

dp ep(-lrip) 'r f06( - ,;) and (5) integrating over * (summation).
- dp expi(-Zwivp) J' d'r f(r)6(p - p'u)

If we multiply the one-dimensional Fourier

transform data A(s,v) by another filter function as

well, the reconstructed function is a Fourier-Clu-

= d-r [(r) exp(-2viavr) - F(I -- tered version of f(r).

Pd;v Other expressions (and hence other procedures

for taking the inverse Radon transform exist and are
where capital letters denote Fourier transforms of given in Reference 3.

the corresponding Lower-case functions. This is the
central-slice theorem. In words, the one-dimen- In addition, it can be shown that by convolving

sional Fourier transform of a projection X4(p) line-integral projections from two two-dimensional

yields one line through the origin of the two-dimen- images, and reconstructing by the procedure of Eq.

sional Fourier transform of the original function (3), the resulting two-dimensional image is the con-

f(r) (Figure 1). volution of the two input images.
Y Uxperimes t

We constructed a system using the Radon trans-

form to perform two-dimensional spectral analysis
using SAW chirp filters. The apparatus is dia-

s grammed in Figure 3. The Radon transform of the

input transparency is derived by scanning it with a
line of Here laser light. The light transmitted

through the transparency is collected on a photo-
multiplier tube (PMT). At one instant of time, the
output of the PMT is proportional to the line integ-

ral of the intensity transmission of the transpar-

!ncy along the line of light. By scanning the line

perpendicular to itself, the time signal from the
q F(0) PMT is proportional to the line-integral projection

along one azimuth. Rotating the direction of scan

allows derivation of the complete set of line-inte-
gral projections-- the Radon transform. For obvious

reasons, this device is called a flying-line scanner
(FLS).

Recalling the central-slice theorem, we know
that the one-dimensional Fourier transform of one
projection yields one line through the two-dimen-

Figure I - Geometry of the Radon transform. (a) sional transform of the original function. By using
SAW filters in the chirp Fourier transform algorithm

Derivation of one projection k(f,p) by line integrals (4,5,6), the Fourier transform of each projection is
along azimuth angle 4. (b) Central slice theorem: (.,) h ore rnfr fec rjcini

taken as the projection data are derived. We used

the one-dimensional Fourier transform of a line-in- SAW dispersive filters for the chirps (Andersen Labs
tegral projection yields one line through the two- models DS-120l-1-20-251A and -252A). The time

dimensional Fourier transform of the original two- dispersion of each is 20 as and the bandwidth is 10

dimensional function. 1Hz. The time-bandwidth product (TBW) of the entire

system is only 50, but filters exist that could

boost this to 2000 or more.

3y similar, though more involved reasoning, it ,n this demonstration, only the modulus of the

• can be shown that the original function f(r) may be Fourier transform is computed, but we plan to util-

reconstructed from the projection data by means of ize a third chirp filter to perform the post-multi-

the inverse Radon transform plication and derive the phase information.

II ,
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Extending this system to allow complete Four-

re filtering is straightforward and is diagrammed
in Figure 4. The Fourier transforms of the projec-
tion data are multiplied by a filter function, which

, fcan be clocked out of RON or produced by a function

generator. The filtered transforms are then applied
to an inverse Radon transformer using the procedure
of Eq. (3). The wl-filter multiplication is to be

done using a custom SAW filter that is presently
mfam being constructed in the University of Arizona

M"'i croelectronics Laboratory. The inverse one-dimen-

,G)i sional Fourier transformation will be done by moans
of the chirp-transform algorithm and the output

applied to the z axis of a CiT. To perform the

l. back-projection (smearing), a cylindrical lens is
used to collimate the image in one dimension. The
integration over azimuth angle is carried out as

Figure 2 - Diagram of a tvo-dimensional spectrum before by rotating the image on the recording film.

analyzer using SAW devices. The projections [.(0,p)]
are derived by the flying-line scanner. The one- Mai

dimensional Fourier transforms of the projections
are produced by the SAW chirp filters. The Fourier , )

transform signal modulates the CRT trace. The C.o1 Sm CH[

proper azimuth for display is selected by the image ,t

rotator. - I

To complete the two-dimensional spectral ana-0) W

lysis, it is necessary to display the transforms of , , ,

the projections at the proper orientations. After

detection and amplification, the transform of the ,

projection is applied to the z axs of a clT? whose -,..
trace is imaged on a photographic film. As the PUN
azimuth of scan of the FLS is rotated, the image of

* the CRT trace is rotated at the same rate, building Figure 4 - Block diagram of a two-dimensional

up the two-dimensional Fourier spectrum modulus on system to do Fourier filtering. The signal is fil-
the film. A result from this experiment is shown in tered in the frequency domain and transformed back

Figure 3. The input transparency consisted of three to the space domain by the SAW chirp-transform
gratings oriented at various angles: two fine algorithm. The cylindrical lens performs the back-

crossed gratings overlaid with a- section of coarse projection (creates a two-dimensional function out

grating. In the Fourier transform built up from the of a one-dimensional function), and the proper azim-
projection data, the fundamental frequency of the uth is selected by the image rotator.

6 fine gratings and several orders of the coarse grat-
ing are visible. This spectrum was built up slowly,
but by rapid rotation of the scan direction, we
expect to perform two-dimensional spectral analysis As mentioned previously, another operation sus-

at video rates (30 frames/s) or faster. ceptible to Radon transform analysis is the convolu-
tion of two two-dimensional functions. The neces-
sary apparatus is diagrammed in Figure 5. 3oth

inputs may be projection data from flying-line
0scanners, but it is often useful to convolve a two-

dimensional function with a stored filter function.

This function may be stored in ROM, clocked out to a
fast D/A converter, and used to modulate a carrier.

Thbe resulting signal Is applied to one input of a
SAW convolver. The projection data from the FLS
modulate the carrier and are applied to the other

input of the convolver. The filter function may be

I varied with azimuth angle by clocking a different
function out of ION for each azimuth.

Reconstruction of the two-dimensional convolu-

Figure 3 - Results of two-dimensional spectral ana- tion also follows the procedure of Eq. 3'. 7he

lysis using SAW devices, function is :0d-filtered in the ustom SAW device,

(a) Input transparency consisting of three &ratings. demodulated, and biased up to allow display of bipo-

(b) Two-dimensional spectrum, showing the fundamen- lar output. This signal nodulates the RT and Ls

tal order of the fine gratings and several orders of back-projected and lntegrated over the azimuth as

the coarser grating. before.

J.
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J. -Figure 6 - Block diagram of a three-dimensional

Figure 5 -Block diagram of a system to perform P aaler
two-dimensional convolution with a SAW convolver.
The convolution may be performed between two two- over the digital computer example above. The appli-
dimensional inputs or between a two-dimensional cation of three-dimensional processing is discussed
input and a stored filter function. The SAW con- further in Reference 7.
volver output i~s IvI-filtered by a custom SAW
filter.

Conc lusions

gxteaslos to Threo-Dineusional Data We have demonstrated the ability of one-dimen-
sional processing devices, such as SAW filters, to

The time-consuming nature of three-dimensional perform certain two-dimensional processing opera-
date processing is even more extreme than for two- tions by means of the Radon transform. It is anti-
dimensional data. Performing a (512)' FFT on a min- cipated that this will allow these operations to be
icomputer with array processor and fast disk memory performed much more rapidly than is now possible
may take two days or more. By applying the princi- with digital techniques.
ples of the Radon transform, we expect to speed up

*the computation considerably. We would like to thank Dr. Paul Carr of Rome
Air Development Center, Hanscom Field, Mlassachu-

to the three -dimensionalI case, the Radon trans- setts, for the loan of the SAW correlator. This
form consists of the complete set of one-dimen- research was sponsored by the Air Force Office of
sional integrals taken over planes of the three- Scientific Research, contract number AFOSR-82-0249.
dimensional function. The three-dimensional cen-
tral-slice theorem states that the one-dimensional References
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line through the three-dimensional Fourier transform 1. Radon, J., "Uber die Bestimmung von Funktiontn
of the three-dimensional function (3). durch ihre Integrawerte langs gewisser Manning-

faltigkeiten," Berichte Sichsische Akademie der
AS an example, consider three-dimensional spec- WiSSenschaL ten, Leipzig, I ach. Phys. Kl1. 69,

tral analysis of a function stored as frames of a 262-267 (1917).
movie film (312 images, each 512 x 512 pixels, say). 2. Deans, S tanley R., The Radon Transform and Some
'de can use SAW chirp filters to compute the three- of Its Applications (Wiley, New York, L983).
dimensional Fourier transform. A block diagram is 3. Barrett, Harrison H., "The ladon transform and

Cshown in Figure 6. The data manipulation is consid- its applications," to be published in Progress in
erably more complicated than the two-dimensional Optics.
case, since the Radon transform projections are now 4. Jack, M. A., and E. G. S. Paige, "Fourier transfor-
parameterized by two angles. But by using a digital nation processors based on surface acoustic wave
video frame store and a flying-line scanner, we can chirp fil ters," Wave Electronics 3, 299-14.7
build up the entire Radon transform, sampled at 512 (1978).
azimuth angles, with 512 passes of the movie film. 5. lack, M. A., and 3. H. Collins, "F~ast urr
The digital frame store is then read out through a transform processor based on the SAW chirp
fast D/A to the SAW chirp- transformer. The projec- transform algorithm," 198 IEE 'Ultrasonics sym-
tion transforms modulate the CRT as before, and are posium Proceedings. IEEE Catalog N o. " 8 CH
Imaged onto film. We build up the 512 frames of the 1344.-ISU, p. 533.
transform one at a time by selecting only that part 6. Jack, '1. P. A. 5rant. and i. --. :ol Uis, "The
of the projection transform relevant to the frame theory, design, and a pp lica tions of surface
a t hand. '.fter reading out the video frame store acoustic wave F'ourier transform processors."
512 times, the complete three- dimensional1 transform Proc. IEEE 68, .50-.o8 %1980). A

is built up. With present video storage technology, 7. Barr-!tt. Harrison 4., "Three-dimensional i ma ge
the operation is envisioned to take 17 seconds per recons truc tion from planar projections. it,
frame, or less than 4 hours for the complete set, application to op tical 1 ata processing," Pcric.
This Is an improvement of an order of magnitude SPIE, to be published.

0i



.

Two-dimensional Radon-Fourier transformer
Sk

Anthony J. Ticknor Abstract The well-known central-slice, or projection-slice, theorem states that
Roger L Easton the Radon transform can be used to reduce a two-dimensional Fourier trans-
Harrison H. Barrentt form to a series of one-dimensional Fourier transforms. In this paper we
Optical Sciences Center describe a practical system for implementing this theorem. The Radon trans-
University of Arizona form is carried out with a rotating prism and a flying-line scanner, while the
Tucson, Arizona 85721 one-dimensional Fourier transforms are performed with surface acoustic wave

filters. Both real and imaginary parts of the complex Fourier transform can be
obtained. A method of displaying the two-dimensional Fourier transforms is
described, and representative transforms are shown. Application of this
approach to Labeyrie speckle interferometry is demonstrated.

Subject terms: optical computing- Radon transform, Fourier transform. speckle
interfwometr.
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CONTENTS 2. PRODUCING AND TRANSFORMING THE ONE-
I. Introduction DIMENSIONAL DATA
2. Producing and transforming the one-dimensional data In this section we describe the subsystems for producing the Radon
3. Displaying the transform transform and the I-D Fourier transforms. Since these subsystems
4. Results have been described previously,' - 3 only a brief review is given here.
5. Speckle interferometry Assume that the 2-D function to be transformed is in the form of a
6. Conclusions photographic transparency or print. The projection data k,,(p) are
7. Acknowledgments derived from the input function f(x,y) by scanning a line of light
8. References perpendicular to itself across the function at an angle , (see Fig. I).

The perpendicular distance of the line from the origin is p, and the
1. INTRODUCTION line is uniquely specified by the variables p and 4i. The light transmit-

* The two-dimensional Radon transform reduces a 2-D function to a ted or reflected by the object is detected by a photomultiplier tube
series of I -D functions by integrating over a senes of lines. Although (PMT). The signal out of the PMT is then proportional to the line
this transform is best known in connection with image reconstruc- integral of the object transmittance or reflectance along the line
tion from projections, as in medical computed tomography, it is also (p, 4). As the line is scanned by means of an acousto-optic deflector.
useful in general signal-processing or image-processing applications, the variable p changes, and one scan produces one projection , (p .
Many operations that can be performed on a 2-D function can also A rotating prism in the system changes the orientation of the line,
be done by performing I-D operations on the projections. Recent which is always scanned perpendicular to itself, and provides other
work has demonstrated the usefulness of this approach in calculating projections in the data set. In this way the entire data set, sampled in
Fourier transforms " and Wigner distribution functions,3 as well as 0 but continuous in p, can be formed. This system is refe --I to as a
in pattern recognition,'.' image filteringO and bandwidth flying-line scanner.- 3

compression.$ The I-D Fourier transforms .(w) are formed by a surface
That these operations are possible in the I-D Radon domain is a acoustic wave (SAW) chirp transformer 2,9 in which the input signal

consequence of the celebrated central-slice, or projection-slice. (the projection) is premultiplied by a chirp produced by impulsing a
theorem. This theorem states that if a I-D projection of a 2-D SAW device. The resulting signal is filtered (convolved) by a second
function is formed by integrating over a set of parallel lines, the I -D SAW chirp filter in which the chirp rate is equal and opposite to that
Fourier transform of the projection is one line through the 2-D of the premultiply signal. The signal out of this second filter is
Fourier transform of the function itself (see Fig. I). This line passes coherently detected with a third chirp as a reference. In-phase and
through the origin of the 2-D Fourier space (hence the term central quadrature outputs of the coherent detector give, respectively, the
slice). By varying the orientation of the lines of integration, the whole real and imaginary parts of the complex Fourier transform. If only
2-D Fourier space can be mapped out in a polar format. the modulus of the transform is desired, the third chirp can be

In this paper we describe in detail a practical system for perform- omitted and incoherent detection used.
ing 2-D Fourier transforms in the Radon domain. Special attention By the central-slice theorem, .1,(p) is also the 2-D Fourier trans-
is given to the electronics for displaying the 2-D Fourier transforms, form of f(x,y) evaluated at polar coordinates (pb) in the 2-D
and several representative transforms are shown. As an illustration Fv'ner space, where p = I v.
of this approach. we demonstrate that the Radon transform can be
used to process data from astronomical speckle interferometry. 3. DISPLAYING THE TRANSFORM

A simple way to display the I -D Fourier transforms is in the so-called
Invited Paper OP-I I received June II. 1964: accepted for publication July 30. 1984;
received by Manalpng Editor Sept. 24. 1964. sinogram" format, in which the radial frequency vanable p is plot-
0 1995 Socety of Photo-O cal Instrumentation Enpneen. ted horizontally and the azimuthal variable b is plotted vertically.
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TWO-DIMENSIONAL RADON-FOURIER TRANSFORMER

This representation is certainly legitimate and useful in some applica- modulate a spot on a CRT display that is being scanned in a polar
tions.8 but it is often desirable to present the data in polar format. raster (Fig. 2). The polar angle of the raster is the same as the angle cb
This not only makes the transform more recognizable to someone that specifies the orientation of the line of light in the flying-line
not familiar with sinograms but also presents the data in a form that scanner, while the radial variable on the raster corresponds to the
can be further processed in cascaded systems. A system to accom- frequency p. The time-averaged intensity on the screen represents the
plish this polar display has been designed, built, and operated and is 2-D Fourier transform in a direct format and is equivalent to the
described in this section. intensity distribution in the Fourier plane of a coherent optical

Fornow, assume that only the modulus of the 2-D transform is to transformer with the same input function.
be displayed. The rf signal from the SAW chirp transformer is To maintain synchronism between the polar raster and the flying-
detected incoherently, forming a signal proportional to the squared line scanner, a stepper motor is used to control the rotation of the
magnitude of the Fourier transform, which is then used to intensity- prism in the scanner. Each step of the stepper motor changes the

orientation of the scanning line by i-/ 100 rad. A free-running circuit
operates the stepper motor from about 1 /2 to 1000 steps per second.
Each time a step occurs, a short transistor-transistor logic (TTL)
pulse is sent to a Commodore 64 computer. Upon receiving this

Y pulse, the computer updates an index register to indicate the new
f (L) angle, sends bytes representing the sine and cosine of the new angle to

two digital-to-analog converters, and finally sends a short TTL pulse
* to a third output port to signal the rest of the system to generate a new

line of data.
The start-of-line pulse from the computer starts a scan in the

X flying-line scanner, triggers the impulse generator for the premultiply

a) chirp, and triggers a delay circuit whose output after the proper delay
is a 30 Ms pulse used to control the display. The delay is adjusted such

p that the Fourier transform data are centered within the 30 As pulse.
During this pulse, a bipolar ramp function is generated, passing
through zero at the same time the zero-frequency component of the
Fourier transform is available. This ramp function is multiplied by
the sine and cosine values, and the results of these multiplications are
used to control the x and y deflections of a spot on a CRT display.
This causes the spot to travel across the screen at a constant speed at
an angle equal to the scan angle (b, reaching the center of the screen at

F* a time corresponding to the zero-frequency output time of the
F~e) Fourier transformer.

If the signal coming out of the SAW transformer were simply
detected and used to intensity-modulate the CRT. the screen would
display the desired output except for one problem. As the entire
output is built up, the radial scanning pattern fills the space near the
center much more densely than near the edges. The resulting time-
averaged intensty distribution would appear as F(p) times I p.
where p is the 2-D frequency vector. p is its magnitude, and F(p) is
the 2-D Fourier transform of the input function f(x . y). (Recall that p
is also the magnitude of the I-D frequency P, but .1 can be bipolar.
while p is always nonnegative.) In order to eliminate the I p weight-
ing, it is necessary to multiply the signal before detection byi v i This
is accomplished in the following manner. The ramp function driving

C cental eo fte tRmrrem. the multipliers is used as the input to an absolute-value amplifier.

CCR

Fig. 2. Layout of the R edon-Fourier tranfoner. The acousto-optic deflector in the flying-line .canner is not shown but is to the left of the rotating prism.
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Fig. 3. 2-0 Fouriertransform ofa suar-wve grating in a small circular
aperture.

FIg. 5. 2-0 Fourier transform of two crosead gratings making an angle of
approximately 450.

Fig. 4. 2- DFouiertransformoftwocred gratings making an angle of
approximateIy 900.

Fig. 6. 2-0 Flouviwtmsnsm or a ommputaw-generated hologram with an
The output of this amplifier is a V-shaped function that is the desired annular impulse response.
multiplier.

Because the signal-to-noise ratio is generally decreasing with
increasing frequency, it is also desirable to roll off or apodize the V
function at higher frequencies. This is easily accomplished by current-
limiting the output of the V generator. The signal resulting from
multiplying the output of the convolving filter by the apodized V
function is square-law detected and used to intensity-modulate the
spot on the CRT. The resulting display from one scan is a line in 2-D
Founer space, filtered by pand the apodizing function. As all angles
are traced out. an entire disk of Fourier space is built up on the
screen.

It is straightforward to extend this system to a CRT display of
C complex Fourier transforms. The coherent detector in the chirp

transformer provides bipolar signals proportional to the real and
imaginary parts of the complex transform. These signals can be
separated further into four nonnegative signals, namely, the positive-
real. negative-real, positive-imaginary, and negative-imaginary
components, each of which can be used to intensity-modulate a CRT Fig. 7. 2 -0 Fourier transform of a double pinhole.
display. Either four separate CRTs can be used, or a single display
can be used sequentially for the four components. Alternatively.
analog electronic modules are available to convert the real and square-wave gratings. Again. the duty cycle of the gratings is about
imaginary parts to modulus and phase, which can be displayed with 0 7. The product orders resulting from the convolution of the two
ihe system described above. individual grating spectra are clearly seen. Figure 5 is similar except

that the angle between the gratings is approximatelh 45
RESULTS Figure 6 shows the transform of a computer-generated hoiogram

Several examples of 2-D Fourier transforms produced on the that has an annular impulse response
Radon-Fourier transformer are shown in Figs. 3 through 7. Figure 7 is the transform of a double pinhole The two notches are

Figure 3 shows the transform of a square-wave grating with a duty due to limited dynamic range in the ri mixers, a problem that can be
cycle of about 0.7: the = I and =2 orders are seen. Theapertureof the solved with better mixers.
gratingisa small circular iris, and the rings of the Airy disk are visible With the SAW filters we actually used. the time-bandwidth pro-
in the ± I orders. The effects of the angular sampling can be seen in duct in the I -D transforms was only about 50. so the results shown in
the ±2 orders since only four or five sweeps of the flying-line scanner these figures have relatively low resolution, containing roughly 2000
intersect these orders resolvable spots However. this is by no means a fundamental limita-

* Figure 4 shows the transform of two overlapping orthogonal tion, SAW filters are commercially available that will provide 6000
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TfWO-DIMENSIONAL RADON-FOURIER TRANSFORMER

Fig. 9. Fourier transform of Fig. 8. which is the autocorredation function
of the simulated binary star.

Fig. 8. Speckle int'rfarogram of a simulated binary star. The original 6. CONCLUSIONS
speckle patterns were produced on a computer, but this figure was pro- We have shown that the Radon transform is a convenient and rapid
ducid by the Radon-Fourier transformer. vehicle for the calculation of 2-D Fourier transforms. The particular

system described here, which is based on a flying-line scanner and a
SAW chirp Fourier transformer, has a number of advantages over

spots in a I-D Fourier transform, or almost 30 million in a 2-D coherent optical Fourier transformers. It does not require that the
transform. function to be transformed be in the form of a transparency: it works

For our expertments, the time required to produce a complete also when the function is recorded as a photographic print or is a
2-D Fourier transform was about 0.3 , but again this is not a natural reflecting scene. Although it uses a laser as a convenient
fundamental limitation; rather it is a limitation on how rapidly the source. its operation does not depend on the coherence of the source.

Ir prism in the flying-line scanner could be rotated. It is easily possible Furthermore, the full complex Fourier transform is available, some-
to rotate a prism at 450 rpm. which would yield 2-D transforms at thing that is very difficult to obtain with coherent optical techniques.
video rates, and even I ms per transform appears feasible. The system is also extremely fast. With presently available SAW

filters, a system similar to the one described here could be built that
5. SPECKLE INTERFEROMETRY would produce a 500X500 (500 points across the diameter of the
Astronomical speckle interferometry is an ingenious technique Fourier plane and 500 angles in the range 0 to -r) 2-D transform in
invented by Labeyrie to obtain diffraction-limited resolution from a I 30 s and a 5000 X 5000 transform in a few seconds.
telescope in spite of phase perturbations by the atmosphere. 0 In this
technique. a series of photographic exposures is made, with each
exposure time being short compared to the scintillation time of the 7. ACKNOWLEDGMENTS
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Radon transform and bandwidth compression
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A bandwidth-compression scheme for two-dimensional data is presented that incorporates the Radon transform.
There are three advantages to this approach. only one-dimensional operations are required, the dynamic range
requirements of the compression are reduced by a filtering step associated with the inverse Radon transform, and
the technique is readily adaptive to the data structure. A rectilinear object is compressed to demonstrate the algo-
rithm.

* Introduction (1) The entire coding process can be performed with
state-of-the-art one-dimensional devices.

The Radon transform'" is best known as the theoretical (2) The large dynamic range typical of the compo-
backbone of computed tomography, the technique that nents of the Fourier transform is significantly reduced
produces cross-sectional maps of x-ray attenuation. by the filtering operation.
This transform entails projecting a two-dimensional (3) One line through the center of the two-dimen-
slice of an object's x-ray attenuation coefficient along sional Fourier transform can be examined at a time and
a given direction in the plane of the slice, forming a adaptively compressed.
one-dimensional data set for each projection direction.

, Thus the two spatial dimensions of the slice are trans-
formed into one spatial and one angular dimension in Theory

Radon space. This reduction of spatial dimension can Radon Transform
be used to reduce two-dimensional operations on a

* two-dimensional object to a set of one-dimensional The Radon transform and its inverse2.3 are central to
operations on one-dimensional objects, with each the compression technique. Given a two-dimensional
member of the set corresponding to a projection angle. function f(r), where r is the spatial-position vector (x,
In particular, as a consequence of the central-slice y), the set of one-dimensional projections of f along a
theorem, the Radon transform makes the two-dimen- given direction 0 can be written as
sional Fourier transform of a two-dimensional function
readily accessible without two-dimensional operations' x,(p) = f(r)b(p - r. n)d2r, (1)
actuallyhaving to be performed. Thus the motivation
exists for exploring the use of the Radon transform in where 6(p - r • n) is a one-dimensional Dirac delta
areas outside clinical tomography.4,5 A particularly function restricting the integration of f to a line (with
direct application is to bandwidth compression. 6  normal n) located a distance p from the origin. Thus,

Compressing the data necessary to represent an for each projection direction (, a one-dimensional
image (with minimum image degradation) is important function X,,(p) is constructed. The set of all 0(p) (--
for two reasons: storage requirements are reduced, and <p < , 0 < _) constitutes the Radon transformtransmission bandwidth requirements are reduced. If of f(x, y).

we define the data set to be an image of N X N pixels Performing the one-dimensional Fourier transform
with each pixel corresponding to M gray levels, com- on Eq. (1) and using the sifting property of the delta
pression can be imposed in the spatial domain or in a function results in
transform domain. Spatial compression consists of
reducing (quantizing) the number of gray levels per A (P) ff f(r) exp(-2irivr - n)d2r = F(p)J,-,,
pixel and/or reducing the number of pixels in the image -,
(i.e., reducing the radiometric and spatial redundancy, (2)
respectively). Transform compression consists of
transforming the image (e.g., Fourier, Hadamard, Haar) where v is the frequency-variable conjugate to p, p is the
and then quantizing and/or eliminating the coefficients frequency-variable conjugate to r, and F(p) is the two-
of the transformed image.7 To reconstruct the image, dimensional Fourier transform of f(r), evaluated along

* the inverse transform of the compressed coefficients is the line p = nP, where n in the frequency domain is
taken. parallel to n in the spatial domain. This is the cen-

The Radon transform lends itself to Fourier-trans- tral-slice theorem. %
form compression for three reasons: By writing f(r) in terms of its inverse Fourier trans-
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form in polar-coordinate form and using Eq. (2), we can The advantages of the Radon approach are now dis-
write the inverse Radon transform as cussed.

I. [_From an implementation point of view, hardware
[(r) . do I dvliviA,(v)l exp(2irivp) devices for carrying out one-dimensional operations are

well developed. The operations for each projection at
(3) the compression end involve a one-dimensional Fourier

transform, multiplication by a linear filter, thresholding,
loIf one looks at the bracketed term in Eq. (3), the fol- quantizing, and coding for transmission or storage. Atlowing operations are evident: The one-dimensional the receiving end, only a one-dimensional inverse .

Fourier transform of each Radon projection A,(v)is the requie niol inve
multiplied by the frequency filter I then the inverse Fourier transform is required, followed by themutpidb h rqec itrivre backprojection operation.
one-dimensional Fourier transform is applied to this The dynamic range of a line through the center of a

product and evaluated at p = n • r. This is the two-dimensional Fourier transform is large. To

backprojection step. The integral over 0 is the sum-

mation of the backprojections to produce f(r). quantize such a range efficiently, a variable quantizer
would be required. Multiplying by the I v filter, how-
ever, reduces the dynamic range of the line (near I Y

Compression Scheme 0, where the components are usually largest), simpli-
fying the requirements of the quantizer.

From the central-slice theorem of Eq. (2), access to a line The third advantage is related to the image-depen-
passing through the center of the two-dimensional dent adaptability of the compression scheme. An
Fourier transform is immediately available by the image with relatively sharp, straight edges, oriented in
one-dimensional Fourier transform of a given Radon particular directions, will exhibit a transform with the
projection. This suggests that an adaptive trans- energy distributed along conjugate directions, de-
form-compression scheme can be applied to one line of pending on the symmetry of the original image. Be-
the two-dimensional Fourier transform at a time. In cause the Radon transform handles one Fourier-
fact, the compression step can be advantageously ap- transform line at a time, each filtered line can be ad-
plied to the filtered line, i.e., iviA,(v) of Eq. (3). The aptively compressed to take advantage of the structure
filtered and compressed line is then stored or trans- in the two-dimensional Fourier-transform plane.
mitted. To reconstruct the image, the inverse Fourier
transform is applied to each previously compressed line,
the result is backprojected, and the backprojections are
summed to produce the final image.

The compression is accomplished by thresholding
and quantizing the components of each Fourier line.
Because the projection X,(p) is real, its Fourier trans-
form A,(v) is hermitian (i.e., the real part is even; the
imaginary part is odd), so that only the positive half (P
> 0) of each Fourier line need be transmitted or stored.
The thresholding that we apply is to truncate each line
past some cutoff frequency C,, which is variable from
line to line (i.e., depends on 0). The value of CO is found
from

jjI P ,(v)ju = S mx (4)()()

where

S,m. is the largest value of S, for 0 < : <r, and T is
a parameter that controls the degree of truncation.
Note that the line corresponding to SOm.. is never
truncated and that, as T - 0, Co - - for all lines (limit%

of no truncation). This method of choosing C, is not,
of course, fundamental; other algorithms may be de-
rived.

After truncating the line, we quantize the components (c) I)

by dividing the full dynamic range (positive to negative)specficto he lne ntoa seiesof nifom, iscete Fig. 1. (a) Reconstruction from Radon projections without
specific to the line into a series of uniform, discrete thehligadnmnl8btqatzto 8bt/ie)thresholding and nominal 8-bit quantization 18 bits/pixel),
ranges. Actually, two dynamic ranges exist, one each (b) truncation of 48% of components with 3-bit quantization
for the real and imaginary parts. The component that (1.6 bits/pixel), (c) truncation of 66% of components with 3-bit
falls within a particular range is assigned the constant quantization (1.1 bits/pixel), (d truncation of 48% of com-
value for that range. ponents with two-bit quantization (1.1 bits/pixel).
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Real Imaginary demonstrated. Figure 1(b) represents thresholding
with T - 0.3 and quantization of the Fourier compo-
nent's full range to eight gray levels (3 bits). The
thresholding eliminates 48% of the Fourier components.
The overall bit rate is 1.6 bits/pixel. Figure l(c) has T
- 0.6, eliminating 66% of the components, again with
eight gray levels per component, giving a bit rate of 1.1
bits/pixel. To investigate a coarser quantization, Fig.
1(d) represents the same thresholding as in Fig. 1(b) but
with four gray levels per component, giving a bit rate of
1.1 bits/pixel. Figure 2 is a representation of the
truncated and quantized components that produce Fig.
1(d). The adaptive nature of the compression is evident

F. for this type of object. Note that an overhead of ap-
! /\ I proximately 0.1 bit/pixel is incurred independently of

n 63 0 63 the amount of compression, to keep track of the number
of components truncated per line and the scale factors
relating the dynamic range (both real and imaginary)
of each line to the maximum dynamic range. This

Fig. 2. Truncated and quantized Fourier components of Fig. overhead is included in the results.
1(d).

Summary
Illustrative Example We have shown that the Radon transform can be used

To demonstrate the method, the object illustrated in to advantage in bandwidth compression for several
Fig. 1(a) is compressed. The region to be compressed reasons. First, a line passing through the center of the
is a circle with a radius of 64 pixels, yielding an area of two-dimensional Fourier transform of the object is at-
12,868 pixels. The rectilinear nature of the figure is tainable by a one-dimensional operation that can be
useful in demonstrating the variable compression with carried out by existing fast devices. Second, the dy-
projection angle. namic range of this line is reduced in a filtering opera-

The object is viewed by a TV camera through an tion required by the inverse Radon transform. This
image rotator. The one-dimensional Radon projection reduction enhances compression performance (i.e.,
ko(p) of the object is obtained (at the angle . defined quantization error is reduced). Finally, each line in
by the image rotator) by summing the camera output Fourier space is obtained independently, so the com-
along a horizontal raster line, giving the digital equiv- pression can be adapted to the amount of structure in
alent of the line integral of the object along the line. that line. The technique was demonstrated on a rec-
This summation is performed for each of 128 raster lines tilinear object, and a bit rate of 1.6 bits/pixel was
to yield a 128-element projection. We then rotate the achieved with good fidelity.
image rotator through a small angle (1.8 deg) and find This research was sponsored by the U.S. Air Forcethe next projection, until a total of 100 projections, each Office of Scientific Research under grant AFOSR-82-
with 128 elements, has been taken. 0249.

Each projection is Fourier transformed, yielding a line
through the center of the two-dimensional transform
of the original object. This line is then filtered [mul- References
tiplied by I 1; see Eq. (3)] and compressed by thresh- 1 J. Radon, 'Ober die Bestimmung von Funktionen durch
olding and uniformly quantizing the components, as iJ. Radon"er dieBs gewisser Mannigfaltigkeiten," Ber.
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Three different compressions of Fig. 1(a) are now 1978).
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